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Lightweight (Reverse) Fuzzy Extractor with
Multiple Referenced PUF Responses

Yansong Gao *, Yang Su*, Lei Xu and Damith C. Ranasinghe

Abstract—A Physical unclonable functions (PUF), alike a
fingerprint, exploits manufacturing randomness to endow each
physical item with a unique identifier. One primary PUF ap-
plication is the secure derivation of volatile cryptographic keys
using a fuzzy extractor comprising of two procedures: i) secure
sketch; and ii) entropy extraction. Although the entropy extractor
can be lightweight, the overhead of the secure sketch responsible
correcting naturally noisy PUF responses is usually costly. We
observe that, in general, response unreliability with respect
to a enrolled reference measurement increases with increasing
differences between the in-the-field PUF operating condition and
the operating condition used in evaluating the enrolled reference
response. For the first time, we exploit such an important but
inadvertent observation. In contrast to the conventional single
reference response enrollment, we propose enrolling multiple ref-
erence responses (MRR) subject to the same challenge but under
multiple distinct operating conditions. The critical observation
here is that one of the reference operating conditions is likely to
be closer to the operating condition of the field deployed PUF,
thus, resulting in minimizing the expected unreliability when
compared to the single reference under the nominal condition.
Overall, MRR greatly reduces the demand for the expected
number of erroneous bits for correction and, subsequently,
achieve a significant reduction in the error correction overhead.
The significant implementation efficiency gains from the proposed
MRR method is demonstrated from software implementations of
fuzzy extractors on batteryless resource constraint computational
radio frequency identification devices, where realistic PUF data
is collected from the embedded intrinsic SRAM PUFs.

Index Terms—Physical unclonable functions, Key Generation,
Reverse Fuzzy Extractor, Fuzzy Extractor, Lightweight Authen-
tication

I. INTRODUCTION

Physical unclonable functions (PUFs) exploit manufacturing
randomness to create inseparable instance-specific secrets,
much like a fingerprint of a human being [1], [2]. The PUF is
a promising alternative to low-cost secure key storage. Non-
volatile memory (NVM) such as FLASH, predominantly used
for digital key storage in electronic components nowadays,
may require additional masks and process steps for fabrica-
tion. In contrast, silicon PUFs are inherently compatible with
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standard CMOS fabrication processes, reaping the benefit of
reduced manufacturing costs. In addition, a PUF does not store
secrets permanently in a digital manner, instead, it utilizes
analog randomness to extract secrets on demand. Therefore,
the secret is hidden within the physical structure of integrated
circuits (ICs) and cannot easily be measured physically; hence,
PUF secrets are much less susceptible to invasive attacks in
comparison with NVM stored digital secrets [3]–[5]. This is
advantageous when an IC is deployed in a hostile environment
where an adversary has physical access to the IC, which is
not an unrealistic threat in an Internet of Things (IoT) era. In
this new era, PUF based security mechanisms, where a PUF
can serve as an inseparable root of trust, are attractive for
lightweight authentication and key generation applications to
secure low-end IoT devices that lack protected key storage
mechanisms.

A PUF is characterized by an instance-specific challenge
(incoming binary vector) and response (output binary vector)
behavior. The same challenge query applied to different PUF
instances produces significantly different responses. Whenever
a challenge is repeatedly applied to the same PUF instance, the
response should be consistent. However, in reality, consistent
response regeneration in not possible since responses are
susceptible to noise, such as thermal noise and fluctuation on
operating voltage. As a result, the noisy response jeopardizes
PUF applications. For key generation, the flipped response
bits must be reconciled. As for PUF-based authentication,
according to the recent survey of twenty one authentication
protocols by Delvaux [6], realizations are classified into two
categorizes. The first category falls into the strong PUF obfus-
cation based authentication, which is a variant of the challenge
response pair (CRP) based authentication provided that the
relationship between the challenge and response obfuscation
holds. Obfuscation is realized through, e.g., randomization,
XOR, or decimation [7]–[9] but without reliance on a crypto-
graphic primitive, e.g., universal hash function. Unfortunately,
it has been demonstrated that it is hard to achieve secure
strong PUF obfuscation based authentication, especially in
front of various modeling attacks [10], [11]. After the re-
cent examination of strong PUF based authentication [12],
Delvaux [12] indicates that a fairly conservative approach to
craft a PUF-based authentication protocol is to convert a noisy
response into a stable key and, then follow a keyed algorithm
to perform authentication. This approach is classified into
the second authentication category [13]. We can see that the
second approach requires a PUF-based key generator where:
i) the response errors are stabilized; and ii) hashed to derive
a cryptographic key—together, both procedures are usually
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termed fuzzy extractor (cf. Section II-C). A fuzzy extractor
derives a reliable cryptographic key from noisy raw responses.

Although, the PUF key generator based authentication as-
sures a high-level of security, the approach is challenged by
the high implementation overhead introduced by the the error
correction process responsible for stabilizing a noisy response.
The prohibitive resource demands for error correction is a
significant problem for resource-constraint platforms such as
an Internet of Things devices with limited computational
capability, memory and power. In this paper, we aim to address
this problem.

We take an important step to investigate novel methodolo-
gies to substantially optimize the overhead when implementing
a PUF key generator on, especially, resource limited IoT
devices (tokens) such as RFID tags and wireless sensors. Our
key observation is that all previous PUF key generators solely
enroll a single reference response that is evaluated under the
so called nominal operating condition, e.g., room temperature.
This is ineffective for reducing the unreliability caused by
the fact that the operating condition of a PUF in-the-field
can vary greatly from the nominal operating condition used
in the enrollment process1. Conversely, we propose multiple
reference response (MRR) enrollment under discrete operating
conditions. The crucial observation is that one of the operating
conditions of an enrolled reference response will be closer to
the operating condition of the PUF in-the-field. Alternatively,
though the reproduced response is fixed and is based on the
operating condition of the PUF, the reference response can be
flexibly selected. The overall result is a significant reduction in
the unreliability when compared with the conventional single
reference enrollment method.

As an immediate application, we combine MRR with a
reverse fuzzy extractor (RFE) to realize a MRR based RFE
(MR3FE) that suits lightweight mutual authentication; attribut-
ing to the greatly decreased implementation overhead. To
examine the MRR method’s generalization, it is adopted for a
FE, termed MR2FE. Performance evaluations of both MR3FE
and MR2FE are conducted by software implementation on a
computational radio frequency identification (CRFID) device
that is batteryless and resource limited. For instance, when
a key restoration failure rate of less than 10−6 is desired
and pre-selection based MRR enrollment using only three
references at {−15◦C, 25◦C, 80◦C} is utilized, MR3FE can
reduce the clock cycle overhead by 45% in comparison with
a conventional RFE, while MR2FE can the reduce clock cycle
overhead by 42% in comparison with a conventional FE.

We summarize our main contributions as below:
• For the first time, we leverage multiple reference response

(MRR) enrolled under discrete operating conditions for
PUF key generation. As an immediate application, a
lightweight mutual authentication protocol based on a re-
verse fuzzy extractor (RFE), dubbed MR3FE, is proposed.
We analyze the key failure rate of MR3FE.

1 We recognize that the study in [14] conducted Ring Oscillator frequency
measurements under two discrete operating conditions with the objective of
maximizing the number of independent response bits enrolled from an ROPUF
whilst facilitating the selection of highly reliable bits at a given selection
threshold [14]; however, only the derived single reference is enrolled.

• We demonstrate the efficacy of MR3FE to reduce im-
plementation overhead through experiments using soft-
ware implementations targeting a resource constraint IoT
token—a batteryless CRFID device—with an intrinsic
SRAM PUF.

• To examine the generalization of MRR, we experimen-
tally showcase applicability to a fuzzy extractor and also
demonstrate the greatly reduced implementation over-
head.

Organization: Section II provides background and related
work on FE and RFE, and introduces the conventional RFE-
based mutual authentication. Section III describes MRR en-
abled RFE-based mutual authentication, which is experimen-
tally validated in Section IV. Section V demonstrates the
generalization of MRR by adopting it for a FE (MR2FE).
We discuss security of MRR when it is employed for a
(R)FE in VI, while we further examine limitations of current
investigations and discuss future work. Section VII concludes
this paper.

II. BACKGROUND AND RELATED WORK

We begin with a description of the notational format we
adopted and give a brief overview of SRAM PUFs. Then we
describe related work in the area of fuzzy extractors (FEs) and
reverse fuzzy extractors (RFEs) and introduce the conventional
RFE-based mutual authentication.

A. Notations

We denote a vector with a bold lowercase character, e.g.,
response r. We identify an enrolled response from a specific
PUF as r, while a reevaluated response from the same PUF
is denoted as r′. A matrix is denoted with a bold uppercase
character, e.g., a parity check matrix H. Functions are printed
in sans-serif fonts, e.g., hash function Hash().

B. SRAM PUF

There are various silicon PUF constructions that include:
delay-based PUF such as Arbiter PUF (APUF) [15], [16]
and ring oscillator PUF (ROPUF) [1], [17]–[20]; mismatch
based PUFs such as the static random access memory (SRAM)
PUF [21], [22], latch PUF [23], flip-flop PUF [24], [25] and
Buskeeper PUF [26]; current-based PUF [27], and nonlinear
current mirror based PUF [28]. Readers are referred to [29],
[30] for details of various PUF constructions.

This work chooses SRAM PUFs for experimentally demon-
strating our MRR methodology. SRAM is pervasively embed-
ded within various electronic commodities. When SRAM is
powered up, each SRAM cell has a favored power-up state.
However, the favored power-up state varies from cell to cell,
and chip to chip. Therefore, the power-up pattern of SRAM
memory can be treated as a PUF where the address of each cell
is a challenge and power-up state the response. SRAM PUF is
an intrinsic PUF attributing to its wide scale availability and
the lack of a requirement for extra hardware overhead [31];
these properties make it one of the most popular silicon PUFs
nowadays.
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Figure 1. Reverse fuzzy extractor based mutual authentication mechanism.

C. (Reverse) Fuzzy Extractor

The reproduction of a given PUF response r is not perfect
due to its susceptibility to, for example, thermal noise and
varying environmental conditions. Thus, raw responses cannot
be directly employed as a cryptographic key. A PUF key
generator can turn a response r into a cryptographic key
with full bit entropy. Usually, a key generator comprises of
two procedures: i) secure sketch; and ii) entropy extraction.
Both together are referred to as a fuzzy extractor (FE) [32]–
[34]. The error correction method deals with generating helper
data and the subsequent utility of that data to correct noisy
responses. There are two prevalent secure sketch schemes to
realize a fuzzy extractor: i) code-offset construction; and ii)
syndrome construction [33]. We use the syndrome based con-
struction in this paper; we briefly described this construction
here.

The secure sketch construction has a pair of functions:
Gen() and Rep(). During key enrollment phase, helper data
p is computed by using Gen(r), where p = r × HT and
H is a parity check matrix of a linear error correction code.
The key reconstruction described by Rep(r′,p), where r′

is the reproduced response that may be slightly different
from the enrolled response r, first constructs a syndrome,
s = (r′ × HT) ⊕ p = e × HT, with e an error vector.
Then through an error location algorithm, e is determined.
Subsequently, the response r is recovered through r = e⊕ r′.
The recovered PUF response r may not ideally be uniformly
distributed, therefore, an entropy extraction method such as a
universal hash function compresses the PUF response into a
cryptographic key with full bit entropy.

Normally, in a fuzzy extractor setting, the Gen() function
is performed by the server during the provisioning phase to
compute helper data. In the field, the Rep() function is im-
plemented on a token. By recognizing that the computational
burden of the Rep() function is significantly more than the
Gen() function, Van Herrewege et al. [35] place the Gen()
on the resource-constraint token while leaving the computa-
tionally heavy Gen() function execution to the resource-rich
server; this method is termed reverse fuzzy extractor (RFE).

D. RFE-based Mutual Authentication

A reverse fuzzy extractor is beneficial in reducing the
implementation overhead of a PUF key generator on a resource
limited token. Mutual authentication based on RFE is firstly
proposed by Van Herrewege et al. [35], later improved by
Maes [30]. In Fig. 1, it depicts the RFE-based mutual au-
thentication protocol in [30]. Notably, the gray shaded secure
key sk←Hash(r′) in Fig. 1 is not explicitly utilized in [30],
instead r′ itself is treated as a shared key between the server
and the token. Here, instead of using the response r′ that might
not be uniformly distributed—not having full bit entropy—we
adopt the hash function Hash() to extract key sk with full
bit-entropy.

During the one-time enrollment phase, a response r is
enrolled by the server and saved in the database (DB). In
the authentication phase, the token computes helper data
p←Gen(r′), where r′ is the reproduced response. The server
receives the public helper data p and uses the enrolled re-
sponse r to restore the r′′ ←Rep(p,r). Only when the distance
between r′ and r is smaller than a threshold d, determined by
the error correcting capability of the construction, can r′′ =
r′. Here, only the token and the server share knowledge of the
response r′. Thus, the secret key sk given by sk←Hash(r′)
is a shared session key. The mutual authentication is realized
by employing the nonces nt and ns generated by the token’s
and the server’s true random number generators (TRNG),
respectively; nonces prevent replaying attacks.

Notably, The RFE employed should hold two properties: i)
correctness; and ii) security.

• Correctness implies that the response r′ will be suc-
cessfully recovered based on the enrolled response r and
helper data p through r′ ←Rep(r,p) on the condition
that FHD(r,r′)≤ d

|r| , where FHD() evaluates fractional
Hamming distance (FHD) between two binary vectors.

• Security implies that given the exposed helper data
p, there is adequate residual entropy in the generated
response r′.

Our focus is on the correctness requirement as we are
aiming to significantly reduce the Gen() function imple-
mentation overhead on a token based on the MRR method.
Although our work focuses on the application of MRR to
present the multiple referenced response based reverse fuzzy
extractor (MR3FE), our work is not intending to invent any
methodology to enhance the security of the RFE-based mutual
authentication mechanism, we simply inherit its security [36]–
[38]. Nonetheless, for completeness, we discuss the security
of (reverse) fuzzy extractors in Section VI.

III. MULTIPLE REFERENCED RESPONSE BASED REVERSE
FUZZY EXTRACTOR (MR3FE)

In this sections we explain our intuition for developing
the multiple reference response (MRR) approach, in general,
and then focus on the application of the approach in its
most interesting context, a reverse fuzzy extractor (RFE).
We explain our rationale by developing an understanding of
response unreliability.
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The commonly used PUF reliability model, e.g., in [32],
[39], assumes a fixed error rate, specifically, each response
reevaluation is assigned with the same error rate. This is also
referred to as homogeneous response error rate. In practice,
PUF responses are experimentally demonstrated to exhibit a
bit-specific reliability—heterogeneous error rate [40], [41]. In
this study, we consider the expected value of BER as in [39]
since this provides a convenient but valid method to analyze
the key failure rate in relation to a (reverse) fuzzy extractor.
Now, we can express BER as:

BER = E(FHD(r, r′)), (1)

where r and r′ are two distinct and random response eval-
uations subject to the same challenge applied to the same
PUF. Here E() is the expectation operator. Commonly, r is a
reference response evaluated under a given operating condition
and r′ is the reproduced response evaluated, most likely under
a differing operating condition. BER is influenced by factors
such as thermal noise as well as environmental parameters
e.g., supply voltage and temperature.
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Figure 2. (a) The reference response is enrolled under a nominal operating
condition of 25◦C. To the best of our knowledge, all current PUF applications
enroll only a single response, e.g., evaluated under room temperature. (b)
Reference response is enrolled under 50◦C. (c) Reference response is enrolled
under 0◦C.

We use an example to explain our observations and rational.
Fig. 2(a)2 illustrates a single reference response enrolled under
25◦C3 that is the nominal reference operating condition. We
can see that the BER increases when the operating temperature
deviates away from the reference operating condition of 25◦C.
The maximum BER is around 10%, which occurs at −25◦C.
The minimum BER is under the reference temperature of
25◦C. This minimum BER is solely caused by thermal noise.
In Fig. 2(b), the reference response is enrolled under 50◦C.
We can see that the minimum BER appears at the 50◦C;
the nominal reference operating condition in this case. The
maximum BER is approximately 12% when the regenerated
response is evaluated under −25◦C that is 75◦C below the
reference operating condition. Similarly, In Fig. 2(c), when the
reference response is enrolled under 0◦C, the minimum BER
occurs at 0◦C and the maximum BER around 12% occurs
when the operating condition increases by 75◦C.

In summary, no matter which specific nominal reference
operating condition is selected, for example, −25◦C, 25◦C or

2The BER value in this figure is not obtained from experimental evaluations,
it is only for illustrative purpose.

3Supply voltage is constant.

50◦C, the minimum BER is always achieved at the reference
nominal operating condition. BER increases as the difference
between the reference nominal operating condition and the
operating condition under which response r′ is reproduced
increases. One important fact we observe is that BER is highly
related to the selection of the reference operating condition and
the operating condition of the PUF in the field. A deviation of
the operating conditions of the PUF in the field from that
under which a response is enrolled will always lead to a
deterioration in the expected BER. Although we cannot change
the operating condition under which the PUF operates in the
field, we recognize that we can potentially choose a suitable
reference operating condition during response reconciliation to
reduce the maximum number of erroneousness bits we expect
in a regenerated response. Next, we utilize this important
observation to reason the multiple reference response based
RFE mutual authentication (MR3FE) mechanism.

A. RFE based Mutual Authentication with MRR
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Figure 3. MRR based RFE mutual authentication. OC stands for operating
condition.

Fig. 3 depicts the proposed MR3FE mutual authentication
protocol. In comparison with conventional RFE based mutual
authentication (cf. Fig 1), there are two distinction differences:

• In the enrollment phase, instead of enrolling a single
reference response, the server enrolls multiple reference
responses; each reference response is evaluated at a
different operating condition. This is highlighted in ¬.



5

• In the authentication phase, the server recovers the re-
generated response r′ of the token based on the enrolled
multiple reference responses. This is highlighted in ­.

Next we elaborate on the MR3FE mutual authentication by
taking two reference responses as an example.

An Example with Two Reference Responses: In Fig. 2,
during the enrollment phase, we assume that the server enrolls
two reference responses, r1 and r2, evaluated under 50◦C and
0◦C, respectively. It is worth reminding that r1 and r2 are
subject to the same challenge applied to the same PUF.

In the authentication phase, the token reproduces the re-
sponse r′ and then computes the corresponding helper data
p ←Gen(r′). In addition, verification data u1 ←Hash(IDi,
nt, sk, p) is computed, where u1 is a keyed hash value with
sk as the key. The IDi is the ID of current token, nt is a
nonce generated by the token. IDi, nt, p along with the u1

are publicly sent to the server.
The server now attempts to reconstruct the response r′ based

on its enrolled responses: r1 and r2. This can be handled in
an iterative way. To be precise, the server first uses r1 to
generate r′′ ←Rep(r1, p). Once response r′′ is obtained, the
server verifies whether Hash(IDi, nt, sk′, p) equals u1 with
secret key sk′ ←Hash(r′′) and u1 the verification value sent
by the token. If the verification is successful, then sk = sk′,
for this reason, the r′ is deemed to be successfully restored.
Mutual authentication can now proceed based on the shared
secret session key sk. If Hash(IDi, nt, sk′, p) is not equal to
u1 and the verification fails, the server continues to use r2 for
reconstructing r′ to determine whether r′ can be successfully
recovered.

Notably, it is only after both r1 and r2 are exhausted in
the recovery of the response r′ that MR3FE based mutual
authentication fails. This occurs on the condition that the
verification of u1 has failed and implies that the recovery of
r′ has failed.

Advantages: Following the two reference response example
above, advantages of MR3FE are clear. Let us first assume
that the computed helper data p by the token is only able to
guarantee a successful secret key sk computation by the server
with sk ←Hash(r′) when the BER is no more than 5%—in
other words, less than 5% of response bits display errors under
reevaluation. Assume a single reference response r under 25◦C
is utilized for key reconstruction as in the conventional RFE
case, but response r′ is reproduced under −25◦C. We can
observe from Fig. 2(a) that the r′ is highly unlikely to be
correctly recovered by the server because the BER for the
reference response r evaluated under 25◦C is much higher
than 5% at −25◦C.

Let’s now assume employing the two reference responses,
r1 and r2, as in MR3FE, and still assume that r′ is from
the PUF operating under −25◦C. We can see that reference
response r2 has a high chance to successfully recover response
r′ relying on the fact that the BER using r2 evaluated
under 0◦C as a reference response is now less than 5%—
see Fig. 2(c). Similarly, if r′ is from 75◦C, then using r1
evaluated under 50◦C as a reference response will lead to a

BER of less than 5%, see Fig. 2(c) and consequently to a
successful response recovery.

Overall, we can observe by using MRR, though the server
is unable to change the operating condition under which the
regenerated r′ is evaluated, the server possesses the capability
to employ an appropriate reference response to minimize the
expected difference between a reference response r and the
regenerated response r′ to meet a given error correcting
capability threshold d.

Next, we analyze the key reconstruction failure rate of
MR3FE mutual authentication, which is also the false rejection
rate of the authentication mechanism.

B. Key Failure Rate

To validate the efficiency of the proposed MR2FE and
MR3FE, we focus on the average failure rate of the PUF
key generator. In [40], it is demonstrated that the expected
value of key failure rate based on a bit specific reliability
model is equivalent to the key failure rate predicted under the
commonly used reliability model with a fixed response error
rate model. In other words, the homogeneous reliability model
does correctly capture the average key failure rate of a PUF
key generator [33], [40]. Therefore we will use BER defined
in (1) to express key failure rate.

Our study uses the family of BCH(n, k, t) linear codes with
a syndrome based decoding strategy to realize a reverse fuzzy
extractor considering its popularity [32], [33] and its security
property [33], [42]—we discuss security of fuzzy extractors
in Section VI. Here, n is the codeword length, k is the code
size, t is the number of errors that can be corrected within this
n-bit block. Assuming response bit errors are independently
and identically distributed (i.i.d.), we can express the average
key failure rate of recovering an n-bit response r′ based on
a selected reference response rj , termed as P1j , where the
j ∈ {1, .., J} with J as the number of multiple references
employed by the server, as:

P1j = 1− FB(t;n,BERj) (2)

where BERj is the BER using rj as the reference response.
Here, FB() is a cumulative density function of a binomial
distribution with t successes in n Bernoulli trials, with each
trial having success probability of p, expressed as:

FB(t;n, p) =

t∑
t=0

(
n

t

)
pt(1− p)(n−t). (3)

A BCH(n, k, t) encoding produces (n− k)-bit helper data
assumed to be publicly known while k bits form the secret key
material. For a single BCH(n, k, t) block, the complexity of
finding the k-bit response from r′ is 2k. It is not common to
use a single large BCH(n, k, t) block; typically a large block
is split into small processing blocks to reduce implementation
complexity [43]. For k bits of key material, response r′ can
be divided into multiple non-overlapping blocks of a BCH(n1,
k1, t1) code where n1 < n and k1 < k for a parallel
implementation. Now the complexity of finding the k bit secret
is 2k1·L where L is the number of parallel BCH(n1, k1, t1)
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code blocks used to realize k bits of secret key material. Given
a BCH(n1, k1, t1) code employed to gain a security level of
k bits with L = dk/k1e blocks, the key recovery failure rate
under the assumption of i.i.d code blocks is:

P2j = 1− (1− P1j)
L. (4)

When all J reference responses {r1, ..., rj , ..., rJ} are
employed, r′ reconstruction fails only when all reference
responses cannot restore the response r′. Therefore, the key
failure rate Pfail for J reference responses can be expressed
as a joint probability distribution:

Pfail = Pr(r1,∩...∩, rj ,∩...∩, rJ). (5)

However, due to the complexity of PUF response properties,
e.g., correlations, formally deriving a joint distribution with-
out assuming that {r1, ..., rj , ..., rJ} are independently drawn
under distinct operating conditions is a non-trivial task4. We
propose using a very conservative evaluation of the key failure
rate Pfail without a prior notion of independent implied on the
reference responses {r1, ..., rj , ..., rJ}. We recognize that we
can express the upper bound of the key failure rate Pfail as:

Pfail = Pr(r1,∩...∩, rj ,∩...∩, rJ) ≤ min{P2j}, j ∈ {1, ..., J}
(6)

Now we adopt the very conservative estimate:

Pfail = min{P2j}, j ∈ {1, ..., J} (7)

in our analysis.

IV. EXPERIMENTAL VALIDATIONS

We employ the ultra low power microcontrollers used in
CRFID transponders (WISP5.1LGR) to evaluate the overhead
of the proposed MR3FE mutual authentication mechanism
as illustrated in Fig. 4. The battery-less CRFID transponder
is a highly resource constrained device that operated under
harvested power from radio frequency energy. A CRFID
device is representative of a low-end resource limited IoT
device. Since a CRFID device has SRAM memory, it has the
potential to use an intrinsic SRAM PUF as a trust anchor
without requiring additional hardware [44].

A. SRAM PUF Dataset

The PUF CRP dataset used is from 23 MSP430FR5969
microcontrollers (MCUs) used in CRFID transponders (cf.
Fig. 4). From each MCU, we read power-up states of 16,384
(2KB) SRAM cells as SRAM PUF responses. It has been
experimentally shown that the SRAM PUF reliability is much
less sensitive to voltage variations compared with temperature
fluctuations attributing to the SRAM cell’s symmetric struc-
ture [30], [45], [46]. Hence, we focus on its reliability under
varying temperature conditions: −15◦C, 0◦C, 25◦C, 40◦C and
80◦C. Under each temperature condition, each response bit is
repeatedly measured 100 times.

4Under an assumption of independence, the key failure rate Pfail =∏J
j=1 P2j .

Debug Interface

CRFID device:
WISP 5.1 LRG

MSP430 USB

MSP430FR5969 MCU

Figure 4. A laptop running Code Composer Studio (CCS) and connected
to a USB based JTAG interface for debugging and programming the CRFID
device.

B. Overhead Evaluations

Test Setup: The test environment used is Texas Instruments’
(TI) Code Composer Studio 7.2.0, the C code used is down-
loaded to a MSP430FR5969 LaunchPad Evaluation Kit via
USB. TI CCS has a built-in GCC toolchain for our hardware
kit. This includes the msp430-gcc-6.4.0.32 win32 com-
piler. Considering that our main purpose is to demonstrate
enhanced efficacy of MR3FE compared to the conventional
RFE in a relative manner, dedicated optimization of the C code
was deemed out of scope. We agree that optimization [47] of
the fuzzy extractor code can be carried out to further minimize
the absolute implementation overhead of the MR3FE.

The software instructions are executed sequentially as
advanced out-of-order execution is unavailable for typical
resource-constraint MCUs. The overhead measured in terms of
clock cycles to complete the algorithm is our primary concern.
We measured clock cycles using Profile Clock tool supported
in the CCS environment. In addition, we also measure mem-
ory usage. Besides the 2 KB SRAM memory embedded in
the MSP430FR5969 microcontroller, it is configured with a
63 KB Ferroelectric Random Access Memory (FRAM). Here
FRAM usage (overhead) is reflective of code size, while the
SRAM usage represents size of the internal state used by
the algorithm. The code size is assessed by the .text block
in FRAM using Memory Allocation tool in CCS, the internal
state is manually counted for any local variable declared inside
the algorithm routine.

Hash function and BCH code encoding are two pivotal com-
ponents for realizing the MR3FE and dominates overhead of
MR3FE implementation. We comprehensively evaluate these
building blocks by testing:
• Hash Functions: Six different hash functions are tested.

The results are listed in Table IV in the Appendix. We
evaluate clock cycles and memory overhead. The input
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message size we selected is 240 bytes for these tests.
Among all six software based hash implementations, the
BLAKE2s-128 showed the best performance with a 128-
bit hash. Therefore we selected BLAKE2s-128 for our
evaluations.

• BCH Code Encoding: BCH(n1, k1, t1) code encoding
overhead under different n1, k1, t1 settings are tested.
Results are detailed in Table. V in the Appendix.

C. Comparisons

BER: We first evaluate BER under three different response
enrollment approaches: i) single readout; ii) majority voting;
and iii) pre-selection.
• In the single readout response enrollment, all the enrolled

responses under a distinct temperature is evaluated only
once.

• In the majority voting response enrollment, all the re-
sponses under a distinct temperature are evaluated 9 times
and then the majority vote is applied for enrollment.

• In the pre-selection response enrollment, first, each re-
sponse under 25◦C is repeatedly measured 10 times,
only the response bits exhibiting 100% reliable regen-
erations (all ‘1’s/‘0’s) are selected—we discarded 12%
of bits during this process. Then the reference responses
under other temperatures, −15◦C, 0◦C, 40◦C, 80◦C are
obtained by applying majority voting to the preselected
responses using 9 repeated measurements.
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Figure 5. BER when single readout response enrollment is utilized. (a)
Reference response is enrolled at −15◦C. (b) Reference response is enrolled
at 0◦C. (c) Reference response is enrolled at 25◦C. (d) Reference response
is enrolled at 40◦C. (e) Reference response is enrolled at 80◦C.
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Figure 6. BER when majority voting response enrollment is utilized. (a)
Reference response is enrolled at −15◦C. (b) Reference response is enrolled
at 0◦C. (c) Reference response is enrolled at 25◦C. (d) Reference response
is enrolled at 40◦C. (e) Reference response is enrolled at 80◦C.

BER evaluations based on the three different response
enrollment approaches we employed—single readout, majority
voting and pre-selection—are illustrated in Fig. 5, Fig. 6 and
Fig. 7, respectively.
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Figure 7. BER when preselection response enrollment is utilized. (a)
Reference response is enrolled at −15◦C. (b) Reference response is enrolled
at 0◦C. (c) Reference response is enrolled at 25◦C. (d) Reference response
is enrolled at 40◦C. (e) Reference response is enrolled at 80◦C.

We observe the following:
• Regardless of response enrollment approach, it is empiri-

cally verified that the BER increases as a function of the
temperature difference between the response regeneration
temperature and the reference temperature.

• As expected, both majority voting and pre-selection ap-
proaches reduce BER; the pre-selection approach being
the most effective.

Key Failure Rate: Based on BER values obtained from the
three different response enrollment approaches, we are able to
evaluate the key failure rate. We used Parallel BCH(n1, k1, t1)
blocks as discussed in Section III-B. We consider an evaluation
under the assumption of deriving a 128 bit secret. Therefore,
we determine the number of BCH(n1, k1, t1) blocks required
by using

⌈
128
k1

⌉
. The key failure rates we have determined is

detailed in Table. II. We observe the following:
• Before applying MRR, majority voting and pre-selection

reduces the BER and thus decreases the key failure rate.
• Regardless of response enrollment approaches, our MRR

approach further suppresses the key failure rate. In other
words, the MRR approach complements response relia-
bility enhancement approaches such as majority voting
and pre-selection performed in the enrollment phase.

Overhead We are now able to compare the overhead of
MR3FE (RFE with MRR) with the conventional RFE (only
using a single reference response) when they are implemented
in on a CRFID token. Considering performance advantages,
BLAKE2s-128 is chosen for the hash function (cf. Table. IV
in the Appendix). Notably, RFE based mutual authentication
requires a hash operation three times as highlighted in ®, ¯
and ° (cf. Fig. 3). In Table. II, the overhead of RFE based
mutual authentication is detailed when SRR, 2MRR, 3MRR
are deployed. We observe the following:
• Single Readout Response Enrollment: To achieve

Pfail < 10−6, ten BCH(255,13,59) blocks are required
when the conventional single reference response under
25◦C is used, whereas nine smaller BCH(127,15,27)
blocks are adequate when 3MRR under −15◦C, 25◦C,
80◦C are deployed. In this context, the MR3FE with
3MRR reduces clock cycle overhead by 43.50% in com-
parison with a conventional RFE.

• Majority Voting Response Enrollment: To achieve
Pfail < 10−6, seven BCH(255,21,55) blocks are needed
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Table I
KEY FAILURE RATE ACHIEVED FOR SINGLE READOUT, MAJORITY VOTING AND PRESELECTION RESPONSE ENROLLMENT APPROACHES TO REALIZE A

128-BIT KEY.

Single readout Majority voting Preselection

(n1,k1,t1) block num. SRR 2MRR 3MRR SRR 2MRR 3MRR SRR 2MRR 3MRR

(63,18,10) 8 0.6074 0.2821 2.67× 10−2 0.4355 0.1446 2.7× 10−3 2.26× 10−2 1.10× 10−2 8.21× 10−6

(63,16,11) 8 0.3789 0.1342 8.2× 10−3 0.2366 5.9× 10−2 6.22× 10−4 6.8× 10−3 3.0× 10−3 9.85× 10−7

(127,29,21) 5 0.1712 2.86× 10−2 2.49× 10−4 7.55× 10−2 7.1× 10−3 2.82× 10−6 1.79× 10−4 4.36× 10−5 2.97× 10−11

(127,22,23) 6 6.62× 10−2 7.4× 10−3 3.04× 10−5 2.39× 10−2 1.4× 10−3 1.91× 10−7 2.08× 10−5 4.19× 10−6 5.47× 10−13

(127,15,27) 9 5.7× 10−3 2.95× 10−4 2.66× 10−7 1.4× 10−3 3.51× 10−5 5.09× 10−10 1.66× 10−7 2.67× 10−8 < 10−21

(255,47,42) 3 2.48× 10−2 9.0× 10−4 1.25× 10−7 5.4× 10−3 6.8× 10−5 2.47× 10−11 6.69× 10−8 4.58× 10−9 < 10−21

(255,29,47) 5 2.8× 10−3 3.96× 10−5 8.27× 10−10 3.83× 10−4 1.62× 10−6 3.66× 10−14 3.92× 10−10 1.65× 10−11 < 10−21

(255,21,55) 7 1.52× 10−5 4.72× 10−8 4.59× 10−14 9.90× 10−7 7.17× 10−10 < 10−21 1.79× 10−14 < 10−21 < 10−21

(255,13,59) 10 7.97× 10−7 1.45× 10−9 < 10−21 3.56× 10−8 1.59× 10−11 < 10−21 < 10−21 < 10−21 < 10−21

The FRAM and SRAM memory can be reused when multiple BCH blocks and hash are sequentially computed.

Table II
OVERHEAD OF RFE AND FE WHEN SRR, 2MRR AND 3MRR ARE USED.

Reverse Fuzzy Extractor Fuzzy Extractor

CPU cycles Memory Usage CPU cycles Memory Usage

(n1,k1,t1) block num. FRAM SRAM SRR 2MRR 3MRR FRAM SRAM

(63,18,10) 8 745,721 5,819 bytes 352 bytes 3,360,134 6,720,268 10,080,402 6,843 bytes 1,464 bytes

(63,16,11) 8 722,193 5,699 bytes 355 bytes 3,689,662 7,379,324 11,068,986 6,983 bytes 1,406 bytes

(127,29,21) 5 1,221,359 6,019 bytes 470 bytes 8,081,576 16,163,152 24,244,728 11,563 bytes 1,466 bytes

(127,22,23) 6 1,319,223 6,033 bytes 477 bytes 10,663,102 21,326,204 31,989,306 12,095 bytes 1,464 bytes

(127,15,27) 9 1,316,184 6,015 bytes 484 bytes 19,129,444 38,258,888 57,388,332 13,159 bytes 1,466 bytes

(255,47,42) 3 2,063,241 6,407 bytes 708 bytes 18,515,476 37,030,952 55,546,428 28,925 bytes 1,466 bytes

(255,29,47) 5 2,200,269 6,467 bytes 728 bytes 35,091,151 70,182,302 105,273,453 31,535 bytes 1,466 bytes

(255,21,55) 7 2,377,650 6,481 bytes 734 bytes 58,631,390 117,262,780 175,894,170 31,535 bytes 1,466 bytes

(255,13,59) 10 2,329,519 6,379 bytes 742 bytes 85,493,076 170,986,152 256,479,228 39,527 bytes 1,536 bytes

The FRAM and SRAM memory can be reused when multiple BCH blocks and hash are sequentially computed.

when the conventional single reference response under
25◦C is used. In contrast, six smaller BCH(127,22,23)
blocks are adequate when 3MRR under −15◦C, 25◦C,
80◦C are used. In this context, the MR3FE with 3MRR
reduces clock cycle overhead by 44.52% in comparison
with a conventional RFE.

• Pre-selection Response Enrollment: To achieve Pfail <
10−6, nine BCH(127,15,27) blocks must be applied when
a conventional single reference response under 25◦C
is used. However, 8 smaller BCH(63,16,11) blocks are
adequate when 3MRR under −15◦C, 25◦C, 80◦C are
used. In this context, the MR3FE with 3MRR reduces
clock cycle overhead by 45.13% in comparison with a
conventional RFE.

Overall, we can summarize that the MRR always outper-
forms the SRR in the RFE case. Given the same overhead,
the key failure rate is exponentially reduced via MRR. Al-
ternatively, we can see that MRR greatly reduces the clock
cycle overhead (nearly over 43% reduction) to achieve same
key failure rate as the conventional SRR method. Although
memory usage reductions are not significant—memory is

sequentially reusable, the ability of MRR to use smaller BCH
codes lead to smaller code size and less internal state at run
time.

V. MULTIPLE REFERENCE RESPONSE BASED FUZZY
EXTRACTOR (MR2FE)

This section examines the generalization of the developed
MRR methodology. We investigate the practicality of MRR
when it is adopted to a FE scenario. In this context, the target
device for implementation is not necessarily a highly resource
constraint IoT device like the CRFID transponder. We assume
that the employment of a FE is mainly to derive a secure
cryptographic key, while minimizing the FE implementation
overhead is a desirable goal when possible. In the case of
MRR enabled FE—termed MR2FE, it is the PUF device
that iteratively carries out decoding and checking to identify
whether the key is correctly recovered.

A. MR2FE

The MR2FE key generator operates as follows:
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1) During the key enrollment phase, the server registers
{r1,...,rj ,..., rJ}, which are responses subject to the
same challenge but generated under differing operat-
ing conditions: {OC1,...,OCj ,...,OCJ}. Response rj is
hashed to gain a cryptographic key skj ←Hash(rj).
The server computes helper data pj ←Gen(rj), where
j ∈ {1, ..., J}.

2) During the key reconstruction phase, the PUF device re-
generates response r′. Then the PUF device loads helper
data pj , assumed to be public information and sent from
the server at run time or loaded from an insecure off-
chip/on-chip NVM. Simultaneously, the server sends a
verification value uj ←Hash(ID,ns,skj ,pj) along with
ID and ns—the nonce generated by the TRNG in the
server side—-to the PUF device.

3) The PUF device performs r′j ←Rep(pj ,r′), where r′j=rj
only on the condition that u′j =Hash(ID,ns,sk′j ,pj)= uj ,
with sk′j ←Hash(r′j). Once this occurs, the PUF device
is deemed to have successfully restored the response rj .
Thus the secret key skj is recovered and the following
steps are skipped.

4) Otherwise, if u′j 6= uj , then the secret key skj recon-
struction failed. Step 2) and 3) must be repeated for
reconstructing another ski through pi, where i 6= j.

5) If none of the skj , j∀{1, ..., J}, reconstructions is
successful, then key reconstruction fails.

As we can see, the server actually enrolls J helper data;
each corresponding to one reference response generated under
a varying operating condition. The PUF device iteratively
conducts key reconstruction attempts to recover one enrolled
cryptographic keys, skj . If one of them is successfully re-
constructed, the key recovery succeeds. Otherwise, if none of
them succeeds, key reconstruction failure occurs.

To study the overhead of the MR2FE key generator, we first
comprehensively evaluate BCH code decoding overhead; this
corresponds to the Rep implementation overhead.

B. BCH Code Decoding

BCH(n1, k1, t1) code is chosen again for consistency, its
decoding overhead under different n1, k1, t1 settings are
tested, results are detailed in Table. V in the Appendix.
The experimental setup is the same as that described in
Section IV-B.

C. Comparison

Following the operating steps of the MR2FE key generator
(cf. Section V-A), we are able to quantitatively compare
the MR2FE implementation overhead to token given SRR,
2MRR and 3MRR. Similar to Section IV-C, we still select
BLAKE2s-128 hash function. MR2FE needs to execute the
Rep function at most J times and the Hash function 2 × J
times. This is significantly different from the MR3FE where
increasing J , the number of reference responses, brings no
extra computational overhead to the token.

In practice, the secret key skj that is from a nominal
operating condition, e.g., room temperature, is advised to be
attempted first. Because, the r′ will be more likely reproduced

under an operating condition that is close to the nominal op-
erating condition. On the condition that such a trial succeeds,
the remaining trials are no long needed—step 4) and 5) are
skipped, reducing overhead further. Nevertheless, we analyze
the worst-case scenario, that is assuming that all J trials have
to be performed by the PUF device before a successful key
recovery. Overhead comparisons for a FE with SRR, 2MRR,
3MRR are detailed in Table II. We can make the following
observations.

Single Readout Response Enrollment: To achieve Pfail <
10−6, ten BCH(255,13,59) blocks are required when the
conventional single reference response under 25◦C is used.
In contrast, nine smaller BCH(127,15,27) blocks are adequate
when 3MRR under −15◦C, 25◦C, 80◦C are used. In this
context, the MR2FE with 3MRR reduces clock overhead by
32.87% in comparison with the conventional FE.

Majority Voting Response Enrollment: To achieve Pfail <
10−6, seven BCH(255,21,55) blocks are required when the
conventional single reference response under 25◦C is used,
whereas six smaller BCH(127,22,23) blocks are adequate
when 3MRR under −15◦C, 25◦C, 80◦C are used. In this
context, the MR2FE with 3MRR reduces clock overhead by
45.44% in comparison with conventional FE.

Preselection Response Enrollment: To achieve Pfail < 10−6,
nine BCH(127,15,27) blocks are required when the conven-
tional single reference response under 25◦C is used. However,
8 smaller BCH(63,16,11) blocks are adequate when 3MRR
under −15◦C, 25◦C, 80◦C are used. In this context, the
MR2FE with 3MRR reduces clock overhead by 42.14% in
comparison with a conventional FE.

MR2FE still greatly outperforms the conventional FE with
SRR. The reason lies on the fact that MR2FE avoids the
employment of a large BCH code block for decoding (BCH
decoder complexity grows approximately with the square of
the block size [48]). Therefore, given same key failure rate
and a moderate number of model J , for example J = 3,
MR2FE still consumes much less overhead even when it is the
PUF device that has to perform J trials. Overall, the overhead
experimental results in Table II demonstrates the efficacy gains
from the MRR methodology also applies to a fuzzy extractor
setting.

VI. DISCUSSION

In this section, first, we analyze security, including helper
data manipulation attack, brute-force attacks and entropy leak-
age of (reverse) fuzzy extractors with MRR. Second, we show
that MRR is not specific to the SRAM PUF, but appears
to be generic to other silicon PUF types. Third, through
hash and secure sketch overhead comparisons, we highlight
the significance of reducing the overhead of secure sketch
implementation for constructing a lightweight (reverse) fuzzy
extractor. Then, we discuss limitations of our investigation and
provide directions for future work.
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A. Helper Data Manipulation Attack

Delvaux et al. [49], [50], first introduced helper data manip-
ulation (HDM) attacks although not on helper data generated
from fuzzy extractors. In [33], HDM attacks are applied on
a soft-decision error correction decoding. Here, the attacker
sends manipulated helper data to the PUF key generator and
observes key recovery failures. Over multiple queries, the
attacker learns information about the PUF response, which
eventually allows the attacker to recover the response. To pre-
vent such an attack, one potential countermeasure is to check
the integrity of helper data [33]. During the key enrollment
phase, the helper data p and the enrolled response r are hashed
together to produce the hash value u. The hash value u is
validated during key recovery phase. Consequently, a helper
data manipulation attack will always fail because the attacker
is unable to provide a valid hash u since the attacker has no
knowledge of the response r.

Becker [42] recently revealed a new HDM attack strat-
egy against robust fuzzy extractors. In general, instead of
attempting to recover the secret PUF response, the HDM
attack attempts to set the PUF response corrected by the
key generator to a response ra predetermined by an attacker.
Consequently, the attacker attempts to defeat the helper data
integrity checks by crafting a hash value ua and helper data
pa in an attempt to manipulate the PUF key generator with a
high probability of producing the response ra crafted by the
attacker during the response error correction process. Such a
HDM attack now allows an attacker to impersonate the PUF
integrated device. Further, Becker’s extended HDM attack
allows the adversary to recover the original response r, and
the secret key. Various error correction codes including Reed-
Muller codes [51], [52] based on different decoding strategies,
soft-decision codes [41], [52] and even-numbered repetition
decodes [52] are examined and shown to be vulnerable [42].

A generic countermeasure against Becker’s HDM attacks
does not yet exist and remains an open challenge [42].
However, the ability to mount the attacks depends on: i) the
error-correction code employed; and ii) the method used for
error-correction. Becker [42] shows linear BCH code based
syndrome decoding is immune to HDM attacks; an attacker is
unable to set a specific response, although helper data may be
manipulated to cause the corrected response bits to flip5. Our
evaluations on MR2FE and MR3FE is built upon BCH codes
and employ syndrome decoding secure under HDM attacks.
Nevertheless, the method we propose is agnostic to the fuzzy
extractor employed, because we do not rely on any specific
code or decoding strategy.

Further, recall that helper data is manipulated and sent to
the PUF device, while the attacker tests the key failure to
determine their success. This implies that the attacker is able
to conduct an arbitrary number of queries albeit less than the
complexity of a brute force attack or random guessing. In a
reverse fuzzy extractor setting, it is the PUF device or token

5 A detailed discussion and a proof that syndrome based decoding is
immune from the HDM attacks presented by Becker can be found in Section
6.1 of the article in [42]. Therein, Becker also derives a security criterion
to validate the immunity of a decoding method against the HDM attacks
presented in [42].

performing the Gen operation to generate helper data. Thus,
whenever a HDM attack is orchestrated by an attacker, the
manipulated helper data is sent to the server. Consequently,
HDM attacks target the server in the context of a reverse
fuzzy extractor. In this setting, the HDM attack is likely to be
detected by the resourceful server because of the abnormal key
reconstruction failure rates resulting from the tampered helper
data. We can observe that in a reverse fuzzy extractor setting,
and when faced with a more intelligent server, an attacker
will lose the assumed ability to apply an arbitrary number of
queries.

B. Entropy Leakage

Given a secure sketch with BCH(n,k,t) code, entropy
leakage is caused mainly from the public helper data. The
well-known min-entropy loss is the n − k bound given the
exposure of helper data. This n − k bound is conservative.
Research studies have explored the derivation of a tight bound
for min-entropy loss [33], [36], [53]. However, calculation
of min-entropy loss using the tight bound in [53] requires
undertaking exhaustive simulations as a straightforward an-
alytical equation is not available. The purpose of our work
is to demonstrate that the MRR greatly reduces a token’s
(reverse) fuzzy extractor implementation overhead. Therefore,
we consider the conservative (n− k) min-entropy loss bound
where the public helper data generated by the BCH(n,k,t) code
leaks (n − k)-bit entropy [36], [53]. Then, taking response
bias b into account, the residual min entropy H∞ of the n-
bit response r conditioned on the public helper data p can be
expressed as:

H∞(R|P ) = n · log2(max(b, 1− b))− (n− k). (8)

The reverse fuzzy extractor and a conventional fuzzy extrac-
tor might not provide identical security guarantees expressed
by Eq 8. This is because a reverse fuzzy extractor can
result in unanticipated entropy loss under repeated helper data
exposure associated with a given PUF response r′; unless,
PUF responses demonstrate a symmetry property. In other
words, the one-probability, the probability of a given bit
attaining a binary one value, of PUF responses is a symmetric
distribution [54]; alternatively, are unbiased. Generally, the
extra entropy loss is a result of the leakage of bit-specific
reliability information [53].

The extra entropy loss is important only when PUF response
bias is considerably different from the ideal value of 50% as
shown by the analysis in [6], [53]. We can see that for the
SRAM PUFs tested in our work, the extra entropy loss is very
small. For instance, at 25◦ C the evaluated mean bias of SRAM
PUFs we tested is 49.87%. Such a small bias aligns with
expectations from modern silicon PUFs according to other
studies [30]. In this context, employing a few more response
bits in the reverse fuzzy extractor can compensate for the small
extra loss in entropy. As observed by Delvaux [6], for a PUF
with low bias within [0.42, 0.58], increasing the length of raw
responses alone is an effective measure.

If the bias is severe, entropy compensation by solely in-
creasing the length of raw responses becomes ineffective. As
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Figure 8. Bias of 23 tested SRAM PUFs under five different temperatures.

a result, debiasing the biased raw responses [36] must be
undertaken first, e.g., via classic von Neumann (CVN) debias-
ing, pair-output von Neumann debiasing with erasures (ε-2O-
VN). Notably, not all debiasing schemes offer reusability—
multiple use of the same PUF response—for a reverse fuzzy
extractor [53]. Nevertheless, a reverse fuzzy extractor with
MRR is naturally compatible with debiasing schemes that offer
reusability.

We also tested the SRAM PUF bias in our dataset under the
five different operating temperatures. We want to examine if
there is a relationship between the bias—fraction of ‘1’s—and
the temperature. If there are more ‘1’/‘0’ responses, indicative
of severe bias, when the temperature is higher or lower, then
the temperature might cause an unanticipated entropy loss. The
bias of 23 SRAM PUFs under varying temperature is detailed
in Fig. 8. We can observe that the mean bias is almost invariant
to temperature. Therefore, we can expect that a change in the
operating temperature to not lead to additional entropy loss.

C. Brute Force Attack Complexity under MRR

We recognize that under a MRR model, whilst retaining
the security properties of a given secure sketch, brute force
attack complexity will reduce. Consider, using six parallel
BCH(127,22,23) codes as outlined in Table. I and Table. II.
According to Eq. 8, we can obtain a key sk having a 129-bit
entropy given a bias of 0.4987 obtained from SRAM PUF test
data. Therefore, without knowledge of sk, the probability of
an adversary succeeding in a brute-force attack to determine
sk is 1

2129 when a conventional single reference response is
employed in the reconstruction. When J multiple response
references are employed, the server or token can attempt to
reconstruct the response, effectively, J times to obtain the
key sk. Correspondingly, the brute-force attack complexity
decreases linearly as a function of the number of multiple
reference response models J ; in our example, the probability
of a brute force attack succeeding is J

2129 . In general, for
J multiple reference responses and min-entropy bound as
expressed in Eq. 8, we can express the probability Pbrute of
a successful brute force attack as

Pbrute = 2−H∞(R|P )+log2(J). (9)

Now, given J MRR models, brute-force attack complexity
reduces only slightly while significantly alleviating failure

probability Pfail and the token’s Gen or Rep implementation
overhead as shown in Table. I and Table. II, respectively.
For example, consider the probability of key failure Pfail =
2.08×10−5 for SRR and 5.47×10−13 for 3MRR for the BCH
(127,22,23) code in our example given in Table. I, when pres-
elected response enrollment approached is utilized. Compared
to the 3 fold increase in the success of a brute force attack,
still extremely low, 3MRR has resulted in more than 107 fold
decrease in the key failure rate. Further, consider achieving
a key failure rate of less than 10−6 using SRR. We can
see from Table. I that 10 parallel blocks of BCH(255,13,59)
have to be used when a single readout response enrollment is
adopted. Considering the implementation overhead of a reverse
fuzzy extractor on a token to also achieve key failure rate
less than 10−6 employing MRR, nine smaller BCH(127,15,27)
are adequate. In this context, the overhead in terms of CPU
clock cycles is reduced by 43% with 3MRR—2,329,519 vs
1,316,184 clock cycles. We can see that the gains in failure
rate and implementation overhead more than compensate for
the very small reduction in brute force attack complexity.

D. Generalizabilty of MRR

We have validated the MRR method with SRAM PUFs
where operating conditions that deviate from the reference
condition results in responses that exhibit a higher BER
than that responses generated at the enrolled reference con-
dition. We can observe that this behavior agree with other
experimentally validated silicon PUFs such as ROPUFs [55],
Latch PUFs, D flip-flop PUFs, Buskeeper PUF and Arbiter
PUFs [30] summarized in Table. III and obtained from pub-
lished literature. We can see that, in general, the BER increases
when the difference between the reference operating condition
and the condition under which the response is regenerated
increases. We have shown in our study that in this context, our
MRR approach provides flexibilities of selecting a reference
operating condition that is potentially closer to the specific
working operating condition of the in-the-field device. There-
fore, in general, we can expect the MRR approach to provide
an implementation efficiency for silicon PUFs.

Table III
BER EVALUATED AS THE DIFFERENCE BETWEEN THE ENROLLED AND

WORKING OPERATING CONDITIONS. THE DATA IS OBTAINED FROM [30].
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Latch PUF 23.10% 23.38% 2.61% 10.62% 10.60%
D Flip-flop PUF 12.79% 12.90% 3.54% 18.10% 17.89%
Buskeeper PUF 9.68%% 9.77% 4.16% 17.71% 17.48%

Arbiter PUF 7.41% 5.41% 3.04% 5.23% 5.34
RO PUF 9.01% 7.81% 1.53% 7.11% 8.35%

E. MRR Enrollment

We observe that an improvement in the error correction
efficiency is always achieved with trade-offs; for instance,
increasing the enrollment overhead while reducing the key
failure rate. We can see in a soft-decision decoding approach
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as in [56], the PUF-key generator efficiency is enhanced but
requires repeated response measurements, in the order of 10
to 100, to collect individual bit’s reliability information as
additional helper data [56]. A preprocessing method such as
majority voting that can be used with hard decision decoding
to reduce key failure rates also requires repeated measurements
during the response bit enrollment phase [57].

In our MRR approach, we trade-off the overhead of en-
rolling multiple reference responses during enrollment with
a significantly reduced implementation efficiency on a token.
We can also see that the corresponding implementation ef-
ficiency on a token does increase the computation burden
on a server because multiple reference responses now need
to be evaluated in parallel. More specifically, we can see
that our MRR approach requires a moderately increasing
enrollment overhead—enrolling J reference responses given
J operating conditions 6 while it significantly reduces the
encoding/decoding implementation overhead on a PUF token.

Our tested results demonstrate a small number of reference
models, for example J = 3 in our evaluation, already greatly
improves (reverse) fuzzy extractor implementation efficiency
on a token. For instance, to achieve a key failure rate Pfail <
10−6, when a single readout response approach is utilized,
the reverse fuzzy extractor with 3MRR reduces the clock
cycle overhead with that of a conventional single reference
response FE by 44.5%. In addition, the MRR enrollment
overhead is only incurred once during the enrollment phase
but the benefits extends to the life of the token. We can see
that MRR facilitates minimizing the token overhead. In the
context of resource limited devices such IoT devices, or the
CRFID token we have employed in our approach, minimizing
implementation overhead is highly desirable in practice. We
can expect a resourceful server in such a context to easily
manage the increase in computation overhead.

F. Hash and Encoding/Decoding Overhead

Based on Table IV, Table V and Table VI, we can see
that it is paramount to minimize the absolute error correction
overhead for not only the Gen but also Rep function because
the overhead of a hash function is always much less than
that of secure sketch. Or in other words, regardless of RFE
or FE, the Gen and Rec implementation overhead is always
dominant. According to the fully implemented PUF-based key
generator on an FPGA platform by Maes et al. [32], where
concatenated (7, 1, 3) repetition code and a BCH(318, 174,
17) code was used, the BCH(318, 174, 17) decoder and (7,
1, 3) repetition code cost were 112 and 37 FPGA slices
respectively, while the hash implementation of SPONGENT-
128 only occupied up 22 slices. The hash function logic
overhead was only 15% of the error correction logic.

Our code encoding/decoding overhead evaluation agrees
with this observation but from a different implementation. In
particular, our results are from implementations in software

6In practice, one can set up several temperature zones in one temperature
oven—similar to the reflow oven. In this context, multiple reference responses
are enrolled sequentially by passing the same PUF integrated IC into each
temperature zone sequentially e.g., via a conveyor belt.

rather than hardware [32]. In fact, in the software imple-
mentation of the hash and BCH decoder, the hash takes
even less overhead in comparison with the BCH decoder.
We can conclude that a lightweight PUF key generator is
very hard to achieve without optimizing the error correction
coding/decoding overhead regardless of implementation in
hardware or software. The MRR method we present provides
a new approach to substantially minimize the error correction
overhead.

G. Limitations and Future Work

Generalizability: In our experimental study, we have eval-
uated our MRR approach using SRAM PUFs. Although we
discuss the generalizability to other silicon based PUF types
in Section VI-D where the expected bit error rate increases
outside of the reference operating conditions, the MRR ap-
proach may not provide an implementation efficiency for PUF
types that do not exhibit the above behavior. We believe the
investigation of MRR to all PUF types raises an interesting
research question to be addressed in the future.

Soft-decision Decoding: We have focused on hard-decision
decoding and not considered the impact of our approach on
soft-decision decoding. In general, we believe the MRR ap-
proach used with a soft-decision decoding strategy can further
reduce implementation overhead. Consider, for example, the
two approaches: i) soft-in-soft-out [41], [43]; and ii) hard-in-
soft-out [52] where information of bit-specific reliability is
employed as helper data to point out reliable responses to
improve the gain of the PUF key generator. Now, instead of
enrolling the bit-specific reliability along with the response
itself under a single reference operating condition, bit-specific
reliability along with response itself under multiple reference
operating conditions can be deployed. We can see that the
MRR approach has the potential to help lower key the failure
rate further and, consequently, reduce the footprint of the
needed key generator implementation.

The extent to which the MRR approach can provide a
benefit under soft-decision decoding should be investigated
further. However, we can see that soft-in-soft-out decision
decoding in [41] and decoding strategy based on hard-in-
soft-out proposed in [52] are found to be vulnerable to the
helper data manipulation attacks proposed in [42]. Therefore,
care should be taken in selecting the soft-decision decoding
methods for evaluation.

A Tight Bound for Key Failure Rate with MRR: In our
current work, we limit our evaluation of Pfail to employing
min{P2j}, j ∈ {1, ..., J} to demonstrate the MRR’s efficacy
in a very conservative setting. Tight bounds on evaluating
Pfail that considers the complexity of correlation between the
reference responses leaves for very interesting future work.

Pfail = Pr(r1,∩...∩, rj ,∩...∩, rJ), j ∈ {1, ..., J}. (10)

VII. CONCLUSION

We constructively developed MRR to significantly reduce
the overhead of RFE and FE implementations and proposed
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MR3FE and MR2FE for lightweight mutual authentication and
key generation. We comprehensively validated our approach
through a case study by implementing on an ultra low power
MCU employed by a CRFID transponder (WISP5.1LGR) as
an exemplary resource constrained IoT device. Our extensive
experimental analysis demonstrate that, regardless of response
enrollment approaches, (R)FE with MRR will always greatly
outperforms the conventional (R)FE with a single reference re-
sponse. Enrolling more reference responses under fine-grained
operating conditions can further reduce a token’s overhead,
specifically, in MR3FE case because its overhead is indepen-
dent of the number of enrolled MRR. The proposed MRR is
not only applicable to the case-studied SRAM PUF but also
to other PUF types. Dedicated and specific implementation
optimization, e.g, C code optimizations, can be exploited to
further decrease the overhead we have reported in the paper.

APPENDIX

Table IV
HASH OVERHEAD (MESSAGE SIZE= 240 BYTES).

name digest size clock cycles FRAM usage SRAM usage

DM-SPECK64 64 bits 178,448 1,566 bytes 52 bytes
BMW-256 256 bits 150,046 11,398 bytes 215 bytes

SHA1 160 bits 159,969 12,442 bytes 94 bytes
BLAKE2s-256 256 bits 106,482 4,964 bytes 238 bytes
BLAKE2s-128 128 bits 104,723 4,961 bytes 238 bytes

SHA3-256 256 bits 584,126 3,652 bytes 472 bytes

Table V
BCH CODE ENCODING OVERHEAD.

(n1,k1,t1) clock cycles FRAM usage SRAM usage

(63,18,10) 53,944 858 bytes 114 bytes
(63,16,11) 51,003 738 bytes 117 bytes
(63,7,15) 31,577 842 bytes 126 bytes

(127,64,10) 238,671 858 bytes 197 bytes
(127,57,11) 248,433 1,002 bytes 204 bytes
(127,50,13) 235,005 1,034 bytes 211 bytes
(127,43,14) 219,095 1,050 bytes 218 bytes
(127,36,15) 198,758 1,044 bytes 225 bytes
(127,29,21) 181,438 1,058 bytes 232 bytes
(127,22,23) 167,509 1,072 bytes 239 bytes
(127,15,27) 111,335 1,054 bytes 246 bytes

(255,123,19) 930,093 1,370 bytes 394 bytes
(255,63,30) 680,087 1,418 bytes 454 bytes
(255,47,42) 583,024 1,446 bytes 470 bytes
(255,37,45) 476,744 1,492 bytes 480 bytes
(255,29,47) 377,220 1,506 bytes 488 bytes
(255,21,55) 294,783 1,520 bytes 496 bytes
(255,13,59) 201,535 1,418 bytes 504 bytes
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