Evaluation of a MEMS based theft detection circuit for RFID labels

Damith Ranasinghe and Peter H. Cole
Passive labels have no power source but obtain power from the incident RF signal.

Active Tags have an on board power source. They may backscatter a reply or may be independent reply generating labels.
Active RFID labels

- Backscatter labels.
 - Operating range of tens of meters.
 - Battery used only to power logic circuits.

- Independent reply generating labels.
 - Range of several hundred meters.
 - Battery is used for transmitting and powering the logic circuits.

- Power conservation is an important issue.
 - Labels should be turned "off" when not interrogated.
 - Life time of the label should commensurate the shelf life of the labeled commodity.

- Need to create a solution that addresses
 - Theft detection
 - Power conservation

- This paper considers Active labels operating in the UHF ISM band.
 - 902-926 MHz (FCC Regulation in the USA).
The proposed theft detection circuit is a zero power turn-on circuit for active RFID labels that will rely on generating a voltage of the order of 1V that can turn a CMOS transistor from fully off to fully on when triggered by a low frequency large volume magnetic field.
The low frequency large volume magnetic field provides the trigger for the MEMS circuit. Such a field can be setup in and around the vicinity of a large corridor exit to turn the MEMS theft circuitry “on” when a thief attempts to flee with stolen goods.
Large volume LF field

Trigger field

- Use of an unlicensed frequency in the LF spectrum.
- Frequency large enough to prevent false triggering.
- Consider the use of 130 kHz trigger frequency.
- Need to consider practically achievable magnetic fields at 130 kHz.
 - Coil diameter 3m, coil wire diameter 10 mm, Power 50 W,

\[
H_z(z) = \frac{Ia^2}{2\left(a^2 + z^2\right)^{3/2}}
\]

![Graph showing the magnetic field profile](image)
Magneto-electroacoustic energy conversion

- Requires a 1 V from the MEMS device
 - Approximate voltage required to turn on a FET
 - FET will form a switch that will activate the theft detection logic
 - In case of a theft
 - the label will alter the nearby readers and
 - transmit a beacon at full power for the duration of the battery.
 - Allows the thief to be tracked.

- The power generated from the MEMS device is rectified and used to turn on the theft detection circuit.
Magneto-electroacoustic energy conversion

◆ RMS voltage available to turn on a FET

\[V_{TO} = \sqrt{k_{eff}^2 Q_m^2 (Mv\mu_0)^2 |H|^2 C_{22S}^2 \frac{2}{C_J C_{22eff}}} \]

\[k_{eff}^2 = \frac{r k^2}{(1+r)^2 - k^2(1+r)} \]

is the effective electromechanical coupling factor of the MEMS structure.

\[C_{22eff} = \left[1 - \frac{k^2}{1+r} \right] C_{22p} \]

is the effective compliance of the structure.

◆ Where
 - \(C_j \) is the junction capacitance of the diode presented to the MEMS device.
 - \(r = C_j/C_{11} \).
 - \(H \) is the magnetic field strength.
 - \(Q \) is the quality factor of mechanical resonance.
 - \(M \) is the remnant magnetisation constant.
 - \(\nu \) is the volume of the magnetic structure.
Practical evaluation

Evaluate the feasibility of the structure

- PZT piezoelectric material
- Shear coupling coefficient of 0.69
- Frequency constant of 1000 Hzm
- Height, h = 7mm
- PZT compliance of $30 \times 10^{12} \text{ m}^2\text{N}^{-1}$

Resonance frequency of the piezoelectric structure as a function of its thickness
Practical evaluation

Effect of the piezoelectric structure dimensions on V_{TO} at ½ meters from the screaming corridor

Effect of the magnetic structure dimensions on V_{TO} at ½ meters from the screaming corridor
Practical evaluation

- Optimal size of the structure for maximum sensitivity
 - \(w = 5 \text{ mm}, \ t_p = 2 \text{ mm}, \ t_m = 2 \text{ mm} \) and \(h = 7.5 \text{ mm} \).

- Turn on range of the theft detection label measured from a “screaming corridor” when the structure is off mechanical resonance.
Conclusions

- Sufficient energy transfer is possible and thus a feasible solution.
- Meets the demands of a high performance theft detecting RFID label for high-end goods.
 - Minimizes power consumption
 - Improved lifetime for the label
- Mechanical Q of the structure is high
 - Narrow band resonance at 130 kHz
 - prevents false turn-on from stray magnetic fields.
 - Good voltage magnification
- Future work
 - will involve the examination of other possible structures and the interplay between the electrode capacitance and the piezoelectric capacitance.
 - Simulation of the mechanical structure to confirm the results obtained from the analytical method.