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ABSTRACT
Recent emergence of small, lightweight, batteryless (pas-
sive), and therefore maintenance free, wearable computing
platforms such as sensor enabled RFID (Radio Frequency
Identification) tags provide new opportunities for low cost
and unobtrusive activity monitoring. Unfortunately, data
streams from passive sensors are uniquely characterised by
sparsity and noise. Consequently, readily extracting features
that require a data stream with a regular sampling rate, such
as those based on frequency domain transformations and
auto regressive coefficients are challenging. In this study, we
propose an approach that reduces online interpolation errors
to facilitate interpolating sparse acceleration data streams
from a passive RFID tag with an on-board accelerometer
sensor. We demonstrate using two datasets from older peo-
ple that incorporating features extracted from interpolated
acceleration data depicts a significant performance improve-
ment compared with incorporating features possible from
only raw acceleration data. However, this is achieved at the
expense of a real-time prediction delay (>400%) due to pre-
processing involved. Furthermore, we demonstrate that for
these types of sensors, features readily available from a typ-
ical RFID platform can be successfully used instead of fea-
tures extracted from an interpolated data stream to achieve
similar or better activity recognition performance without
preprocessing and, whilst, using significantly less number of
features.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Pat-
tern analysis; I.5.4 [Pattern Recognition]: Applications—
Signal processing ; I.5.m [Pattern Recognition]: miscella-
neous—RFID based activity recognition

General Terms
Experimentation, Algorithms

Keywords
Wearable passive rfid tags; Sparse acceleration data streams;
Interpolation; Human activity recognition; Features

1. INTRODUCTION
Automatic identification of human activities using wearable
sensors is a growing field of study that forms the basis for
many ubiquitous healthcare applications such as gait analy-
sis [25,31], rehabilitation [26] and falls risk activity recogni-
tion [28, 41]. Most activity recognition (AR) studies based
on body-worn sensors use bulky, battery powered devices
strapped or attached to various parts of the participants
body such as thighs [24, 41], arms [16] and the head [42].
Some of the studies even utilize multiple sensors such as
accelerometers and gyroscopes attached to multiple body
locations [3, 10, 36]. Use of these types of bulky and ob-
trusive sensors for monitoring, particularly older people is
unsuitable as reported by user acceptability studies where
unobtrusiveness is highlighted as one of the key acceptance
criteria [13]. Furthermore, these types of sensors also require
maintenance such as regular recharging or replacement of
batteries during their operational life.

In contrast, a new generation of passive (batteryless) sensors
such as sensor enabled RFID (Radio Frequency Identifica-
tion) tags [18, 32] are creating exciting new prospects for
wearable sensor based applications. As opposed to battery
powered sensors, passive sensors are lightweight and small,
hence they can be used for unobtrusive monitoring. In addi-
tion, passive sensors are maintenance free as they require no
battery. Furthermore, these sensors can be easily embedded
into garments and thereby preventing removal of the moni-
toring device, specially by cognitively impaired patients [23].
Therefore, technological solutions for monitoring human ac-
tivities of older people based on passive sensors are more
likely to be accepted in practice [13,34].

In this study, we focus on the use of a single passive sensor
enabled RFID tag embedded with an accelerometer (hence-
forth sensor tag) for real-time AR. Apart from the accelera-
tion signal, sensor enabled RFID tags also provide informa-
tion related to signal strength (see Section 3.1) [34], which
provide contextual information.

However, unlike battery powered sensors, data streams from
passive sensors are noisy, and sparse with low and vari-
able sampling rates because passive sensors need to har-
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vest adequate energy prior to powering and sampling a sen-
sor [32, 34]. As a result of this sparsity, features that re-
quire a data stream with a regular sampling rate cannot
readily be extracted, particularly for machine learning based
AR. For example, frequency-domain features [2,3,24], which
constitute a significant number of features used in machine
learning based activity recognition studies, require a data
stream with a regular sampling rate. More recently, au-
toregressive coefficients have successfully been used as fea-
tures in AR [20]; these features also require a data stream
with a regular sampling rate. Common solution to address
the sparsity is the application of interpolation methods to
resample the sensor data stream to achieve a regular sam-
pling rate. Although, there are methods to obtain frequency-
domain features based on Non Uniform Fast Fourier Trans-
form (NUFFT) from sparse data streams [8, 12], other fea-
tures such as autoregressive coefficients and discrete cosine
transformation coefficients [15, 20] that requires a regular
sampling rate cannot be extracted using these approaches.

In this paper, we investigate whether additional features
possible from interpolated acceleration signals from passive
sensor enable RFID tags would yield a performance improve-
ment over the use of a limited set of time domain features
constructed using biomechanical analysis from sparse accel-
eration signals for real-time AR. To ground our work, we
have selected two real-world datasets collected for ambula-
tory monitoring of older patients in patients’ rooms [28,29].
The main contributions of this study are:

• We propose a dynamic sensor data augmentation al-
gorithm, an approach to facilitate online interpolation
of sparse acceleration data streams from passive sen-
sors to allow extraction of features that require a data
stream with regular sampling rate. Our approach re-
duces interpolation errors when interpolating sparse
sensor observations that are temporally distant by aug-
menting the sensor data stream using most recent sen-
sor observations.

• We implement five real-time sensor data stream inter-
polation methods with increasing order of complexity.
We evaluate activity recognition performance and time
taken to interpolate streaming sensor data collected
from older volunteers (66-86 years) wearing a passive
sensor enabled RFID tag embedded with an accelerom-
eter over their attire in a clinical environment.

• We demonstrate that when only acceleration signals
are considered, set of additional features from interpo-
lated acceleration data (auto regressive features and
frequency-domain features) significantly improve ac-
tivity recognition performance over time-domain fea-
tures based on biomechanical studies of human move-
ments obtained from sparse acceleration data.

• We also show that, in general, features generated through
information available from an RFID platform, as in our
case, can effectively be used for activity recognition
instead of additional features, i.e. auto regressive fea-
tures and frequency-domain features, to achieve simi-
lar performance without additional preprocessing.

Following sections of the paper are organized as follows: Sec-
tion 2 discusses related works; Section 3 presents the passive
sensor, the data set used for the evaluation and discusses the
interpolation methods and features; Section 4 presents our
evaluation and results; and we conclude the paper in Sec-
tion 5.

2. RELATED WORKS
To date, number of studies that focus on real-time activity
recognition using acceleration sensors exist [1,3,9,11,17,22,
25,28,33,34,37,40,42]. Some studies [1,3,9,11,17,22,25,40]
are based on battery powered sensors while recent studies
use passive sensors [28,29,33,34]. In these works human ac-
tivities are recognized based on empirically determined de-
cision tree algorithms or using machine learning algorithms
to automatically learn the activity patterns embedded in
acceleration data streams.

Activity recognition research based on machine learning tech-
niques have extracted number of features from acceleration
signals and they can be categorized as: i) time-domain fea-
tures; ii) frequency-domain features; and iii) features based
on biomechanics and heuristics [10]. Features such as mean,
standard deviation, variance of the acceleration signal were
used as time-domain features [3,10]. Frequency-domain fea-
tures include Fast Fourier Transformation (FFT) coefficients
[24], Discrete Cosine Transformation Coefficients [15], spec-
tral energy [3] and entropy [3]. Features such as trunk
tilt [11,25,28,33,34] and vertical displacement [25] are based
on biomechanics. Inter axes correlation [3] and coefficients
of an auto regressive model [20] are examples of features
that are based on heuristics. Majority of features for ma-
chine learning base AR are frequency-domain based features.
Calculating frequency-domain features require a signal with
a regular sampling rate. Furthermore, calculating features
such as auto regressive coefficients [20], also requires a data
stream with regular sensor observation.

The sparsity of the data streams from passive sensors re-
duces the number of features that can be readily calculated
from raw acceleration signals without further processing and
consequently incurring additional delays. Therefore, we are
motivated to investigate whether additional features based
on interpolated acceleration signals from passive sensor en-
abled RFID tags can yield a performance improvement over
the use of a limited set of time-domain features from sparse
acceleration signals for activity recognition. Specifically, we
consider frequency-domain features based on FFT and auto
regressive coefficients from interpolated acceleration signals
as learning with these features have resulted in highly accu-
rate activity prediction models in previous studies [20,42].

3. METHODOLOGY
3.1 Sensor Tag
We utilized a passive (batteryless) sensor enabled RFID tag
called Wearable Wireless Identification and Sensing Plat-
form (W2ISP) tag (Fig. 1) [18], which is based on the Wire-
less Identification and Sensing Platform (WISP) [32], em-
bedded with a 3D acceleration sensor (ADXL330). Thus,
this sensing device act as a passive acceleration sensor.

Like any passive RFID tag, W2ISP harvests power from ra-
diation emitted by the RFID reader antennas and read by a
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Figure 1: A participant wearing the W2ISP at the
sternum level over the garment.
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Figure 2: A typical data stream obtained using the
sensor tag illustrating sparsity and noise

standard off-the-shelf UHF (Ultra High Frequency) RFID
reader where sensor data is embedded in the tag identi-
fier [35]. W2ISP can be read approximately from 4 m when
worn by a human, weighs approximately 3 g and mass pro-
duction cost per tag is estimated to be about $3 [5]. When a
W2ISP is adequately powered, a data stream with an upper
bound of 40 Hz sampling rate can be obtained.

However, successful powering of the W2ISP depends on sev-
eral factors. A decrease in the strength of radiation from
RFID reader antennas due to: i) W2ISP being further away
from antennas; ii) occlusion of radio signals from radio fre-
quency opaque objects such as a human body; and iii) change
in W2ISP antenna orientation with respect to RFID reader
antennas due to body motion leading to less power being
harvested. Power harvesting is also hindered by signal can-
cellation at the W2ISP due to multipath effect and radio
signal interference from other devices that uses the same ra-
dio spectrum (920-926 MHz in Australia) [33]. Therefore,
sensor data streams from W2ISP, and generally from passive
sensors and sensor enabled RFID tags are: i) noisy due to
inadequate power to sample the embedded physical sensor;
and ii) sparse (variable inter sensor observation time inter-
vals) with low sampling rate (sensor observations per sec-
ond). Figure 2 shows portions of acceleration measurements
obtained during data collection (see Section 3.2) using the
sensor tag, where it clearly shows the data stream charac-
teristics, i.e. sparsity and noise. For instance, during 2850 s
to 2860 s period only 3 data points are available where as
from 2885 s to 2895 s there are 16 data points.

We obtain the 5-tuple [af , al, av, RSSI, aID] from each sen-

Table 1: Distribution of activities in data sets.
Sitting on bed Lying on bed Ambulation Sitting on chair

Roomset1 15162 (25.89 %) 30983 (59.04 %) 1956 (3.73 %) 4381 (8.35 %)
Roomset2 1253 (5.53 %) 20529 (90.65 %) 334 (1.47 %) 530 (2.34 %)
* Percentage of samples are shown next to the count within brackets

sor observation. Here, af , al and av represent frontal, lat-
eral and vertical accelerations measured with reference to
the acceleration sensor (Fig. 1) respectively, RSSI (Received
Signal Strength Indicator) represents the power of the radio
signal of a sensor observation sent by the sensor and received
by a specific antenna and measured by an RFID reader, and
aID represents the identifier of the antenna that captured
the observation. Thus, we have information not only from
an accelerometer, but also from the RFID platform.

3.2 Data Set
We used two data sets described in [33,34] that are collected
for ambulatory monitoring of older patients to conduct our
experiments. These data sets include activities: i) sitting
on bed; ii) lying on bed; iii) ambulation; and iv) standing.
These data sets were collected in two clinical room configu-
rations (Roomset1 and Roomset2 ) (Fig. 3). Roomset1 con-
figuration was equipped with four RFID reader antennas,
and one is placed on top of the bed attached to the ceiling
and rest are placed on the walls in a manner that they illumi-
nate the area near the bed and the chair as shown in Fig. 3a.
Three RFID antennas were used in Roomset2 configuration
where two of them were placed on top of the bed (ceiling) to
provide better illumination of the sensor tag while the par-
ticipant is getting out of the bed and the other was placed
on the wall in front of the chair.

Fourteen older volunteers (age: 78±4.9 years) were trialled;
each wore a W2ISP on top of their garment at the sternum
level as shown in Fig. 1. Placing the sensor at the ster-
num level allows us to capture trunk movements, which is
important to recognize aforementioned activities. Each par-
ticipant was asked to perform a series of broadly scripted
activity routines that were sequential arrangement of the
activities: i) lying on bed; ii) sitting on bed; iii) sitting in
an arm chair; and iv) walking from A to B where A, B is
bed, chair or door. A hopitalized patient can only perform
limited set of activities. For example, a patient may have
their meal while sitting on the bed or chair or they may
move about the room. Therefore, these activities are fairly
comprehensive for older patient monitoring settings. Since
all of these activities are important and no other activities
were included in activity scripts, the ‘Null’ (other) activity
label was not considered. These activities were observed and
recorded along with the ground truth by a researcher using
an in-house developed software. During the data collection
patients were not using blankets, but presence of blankets
will not hinder the sensor tag energy harvesting and conse-
quently the data collection because textile materials are not
radio frequency opaque.

Table 1 shows the distribution of activities in two data sets.
Class labels in both data sets are unevenly distributed and
this imbalance nature is more prominent in Roomset2 as
nearly 90% of the sensor observations are from lying on bed.
Both data sets depict considerable variations in the sam-
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Figure 3: Configurations of the antenna placements
for the two clinical rooms used to collect data

pling rate. For Roomset1 and Roomset2 mean time differ-
ences between samples are 0.368±2.438 s and 0.720±9.717 s
respectively.

3.3 Sensor Data Stream Interpolation
We denote the ith sensor observation si at time ti, where
si is the 5-tuple obtained for each sensor observation and
∀i ti > ti−1, i ∈ N, using the pair (ti, si) then sequence of
received sensor observations {(ti, si)}i≥1, i ∈ N is clearly a
non-uniform time series. We segment the data stream in
real-time as a single sensor observation is inadequate to ob-
tain sufficient amount of information related to a wearer’s
movements or current activity [21, 34]. In this study we
utilize a fixed time sliding window approach to segment
the data stream since this approach performs better than
fixed sample sliding window as shown in our previous re-
search [34]. Let δt be the segment size, then, a segment is
obtained for each sensor observation, (ti, si), where all the
sensor observations from ti − δt to ti, {(tk, sk)}tk>ti−δt, are
considered as the segment for (ti, si).

We interpolate the sensor observations within a given seg-
ment to obtain a data stream segment with a regular sam-
pling rate. However, interpolating between sensor observa-
tions that are temporally distant would lead to large inter-
polation errors due to the unavailability of sufficient infor-
mation to approximate the acceleration signal as indicated
by large temporal gaps in our data sets (see Section 3.2).
For example, consider a function f : [a, b] 7→ R, where
[a, b] denotes a bounded interval in R, approximated by an
nth order polynomial interpolant P using a distinct set of
n + 1 data points D = {x0 . . . xn} ⊂ [a, b]. Then the in-
terpolation error Efn(x) = f [x0 . . . xn]

∏n
j=0(x − xj), where

f [x0 . . . xn] represents the nth order divided difference [39].
Efn(x) clearly indicates that interpolation error increase with
(xj+1−xj). Consequently, interpolating between sensor ob-
servations that are temporally distant leads to extracting
poor contextual information related to the current activity.

To overcome this issue we use the dynamic sensor data
augmentation algorithm in Algorithm 1 that considers a se-
quence of sensor observations {(tk, sk)}tk>ti−2δt to interpo-
late the ith segment. Different interpolants require different
number of minimum data points, N , for successful interpo-
lation. If the required number of sensor observations for
interpolation are not found (line 4 in Algorithm 1), then we
augment the sensor data stream by replicating the furthest
sensor observation (ts, ss) from (ti, si), where ts ≤ ti, at time

Algorithm 1 Dynamic sensor data augmentation

Require: X // Received sensor observations, i // Current
index, N // Number of sensor observations required by
an interpolant, δt // Segment size

Ensure: X̂int // Observations for interpolation

1: X̂i = {(tk, sk)|tk > ti − 2× δt}
2: X̂aug = {∅}
3: s = argmax

j∈{j|tj≤ti,tj>ti−2×δt}
ti − tk

4: if |X̂i| < N then

5: for j = 1 to N − |X̂i| do
6: ts−j = ts − j × δt
7: X̂aug

j = (ts−j , ss)
8: end for
9: X̂int = X̂aug ∪ X̂i

10: end if

Table 2: Summary of interpolation methods used

Pre-processing Notation

Raw signal Raw
Linear interpolation Lin
Cosine interpolation Cos
Cubic interpolation Cub1
Cubic convolution interpolation [19] Cub1
Lagrange interpolation Lag

steps of δt from ts until the required number of samples for
interpolation is obtained (line 5 in Algorithm 1). For exam-
ple, if a single sensor observation needs to be augmented,
then it is augmented as (ts−1, ss−1) = (ts − δt, ss).

In this study we considered piecewise interpolation using
five interpolation methods summarised in Table 2. Fig. 4 il-
lustrates an example resultant signal when aforementioned
interpolation methods are applied to a 1-D sparse accelera-
tion data stream.

We selected these interpolants mainly considering the com-
plexity and the number of data points required for interpola-
tion. Lower number of data points result in a poor approxi-
mation but these methods are less affected by large sampling
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Figure 4: Segment of the af acceleration signal from
W2ISP interpolated to achieve 40 Hz sampling rate
using different interpolation methods



intervals. In contrast, higher number of data points gen-
erally provide better approximation of a signal, but these
methods are more influenced by the large sampling intervals
as in our case. Both linear and cosine interpolants require
two data points. In contrast to linear interpolation method,
cosine interpolation method produces a smoother signal as
shown in Fig. 4. Cubic and fourth order Lagrange polyno-
mial interpolants require 4 and 5 data points respectively.
Cubic convolution [19] interpolation method, which was ini-
tially proposed for image data interpolation only requires 3
data points and produces a signal similar to the cubic inter-
polation method (see Fig. 4) but with one less data point.

Application of these different interpolants produce different
acceleration data streams, which we subsequently use to ex-
tract features for activity recognition. Given a segment of
size δt, the interpolation methods ensure that there is a con-
stant number of samples for each segment that allows us to
extract features used in previous activity recognition studies
using acceleration data.

3.4 Features
In this study, we considered three sets of features: i) time-
domain biomechanical features from raw acceleration data
(ACC); ii) features based on information available from the
RFID platform (RFID); and iii) features based on interpo-
lated acceleration data (INT ). We have selected common
set of features successfully used in previous research and
these features were exacted after segmenting data streams
as discussed in Section 3.3.

Time-domain biomechanical features: We utilized ac-
celeration along the three axes af , al and av which are di-
rectly available from the sensor as features. Furthermore,
trunk tilt angle about the lateral axes θ (measured on the
sagittal plane) [25,28,34] and trunk tilt angle about frontal
axes α (measured on coronal plane) can be approximated
considering the acceleration signals from the W2ISP and ac-
celeration due to gravity as θi ≈ tan−1(af/

√
a2l + a2v) and

αi ≈ tan−1(al/av). We also obtained change in vertical ve-
locity (∆vz) and vertical displacement (∆dz) by integrating
the acceleration signal az along the vertical direction after
adjusting for gravity with respect to a sensor tag wearer [11].
Although ∆vz and ∆dz can be calculated from raw sensor
data, their values are influenced by interpolation because
of the differences in acceleration signal from different inter-
polants as shown in Fig. 4. In total, we considered a set of
7 features from raw acceleration signal (ACC).

RFID platform based features: The RFID platform re-
ports RSSI for a sensor observation and the identifier of
the antenna (aID) that received the reading. Therefore,
RSSI and aID were used as features. Furthermore, we also
utilized a set of features to incorporate activity contextual
information that have been used previously [34] (specifically
MI2 approach in [34]). These features were extracted based
on the antennas that collected the sensor observations per-
taining to a given segment; hence the resulting feature is a
vector MI2 ∈ RNA where NA is the number of antennas
used for obtaining sensor observations. Furthermore, RSSI
is hyper sensitive to distance, d, of the sensor tag to the
antenna that collected data since RSSI ∝ 1/d4 [18]. There-
fore, this set of features (RFID) based on the information

from the RFID platform dependents on the antenna deploy-
ment and provides information regarding the approximate
location (contextual information) of the sensor tag and con-
sequently the sensor tag wearer.

Features based on interpolated acceleration: We ex-
tracted following features that require a signal with a regular
sampling rate from interpolated acceleration signals (INT ).
Based on the three acceleration signals, af , al, av, and the
resultant acceleration signal, ar =

√
af 2 + al2 + av2, we ex-

tracted: i) 80 FFT coefficients [24]; ii) energy (squared sum
of FFT coefficients) [3, 30]; and iii) spectral density by con-
sidering the first 10 FFT coefficients excluding the DC com-
ponent (9 features) [2]. Furthermore, we have also used
coefficients of a fourth order auto regressive model (5 fea-
tures) for the three acceleration signals af , al, and av as it
has been used successfully in [20]. Thus, we obtain 375 addi-
tional features (INT ) that are only available if interpolated
acceleration signals are used.

4. EXPERIMENTS AND RESULTS
In this study we mainly evaluate AR performance when dif-
ferent interpolation methods summarised in Table 2 are used
to condition the sparse data streams from a sensor tag prior
to feature extraction. Our main aim is to identify whether
the additional features extracted using the interpolated data
stream (ACC ∪ RFID ∪ INT ) achieve a significant per-
formance improvement over the limited number of features
possible from a raw sensor data stream (ACC ∪ RFID)
in the context of body-worn passive RFID sensors. We
also evaluate activity recognition performance using features
calculated based on data from the accelerometer (ACC)
and features based on information from the RFID platform
(RFID). Finally, we evaluate the mean time taken to gen-
erate a feature vector when interpolation is utilized as a
measure of cost involved in additional processing (see Ta-
ble 2).

We utilized two state of the art discriminative classification
algorithms successfully used in previous activity recognition
studies: i) Support Vector Machine (SVM) [38]; and ii) Con-
ditional Random Fields (CRF) [33]. We utilized linear SVM
(SVMlin) [7], non-linear SVM using Radial Basis Function
(RBF) kernel (SVMrbf ) [6] and the linear chain CRF im-
plementation proposed in [34] because we are interested in
applications that require real-time AR. During experiments,
we trained activity recognition models based on SVMlin,
SVMrbf and CRF to recognize activities: i) sitting on bed;
ii) lying on bed; iii) ambulating; and iv) sitting on chair
using the collected data sets (see Section 3.2).

As shown in our previous research [34], segment size influ-
ences classification performance mainly through contextual
features calculated based on a segment. Segment size also
influence the feature extraction performance as it increases
the number of data points to be processed. Therefore, we
also evaluate different segment sizes for feature extraction
and different interpolation methods.

4.1 Activity Recognition Performance
We evaluated AR performance based on the mean F-score
for multi-class classification. F-score is the harmonic mean
of the metrics precision (P) and recall (R) and is calculated
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Figure 5: Real-time activity recognition performance for Roomset1 configuration (Raw: ACC ∪ RFID; other
interpolated methods:ACC ∪RFID ∪ INT )
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Figure 6: Real-time activity recognition performance for Roomset2 configuration (Raw: ACC ∪ RFID; other
interpolated methods: ACC ∪RFID ∪ INT )

Table 3: Activity recognition performance for both data

sets*

SVMlin SVMrbf CRF

Roomset1

Raw 83.27±2.37 (8) 88.45±1.68 (8) 83.22±3.52 (2)

Lin 84.44±1.90 (4) 85.98±1.25 (4) 83.73±2.40 (2)
Cos 83.78±1.09 (4) 85.33±3.69 (2) 83.42±2.21 (2)
Cub1 83.70±3.41 (2) 86.17±1.83 (8) 82.39±2.90 (4)
Cub2 84.96±1.23 (4) 86.91±3.00 (2) 83.67±1.89 (2)
Lag 83.43±1.57 (2) 84.39±2.19 (8) 81.25±2.66 (2)

Roomset2

Raw 82.28±3.04 (8) 85.53±2.86(8) 79.99±4.76 (16)

Lin 81.92±4.32 (4) 82.97±3.02 (16) 76.61±4.24 (2)
Cos 84.05±6.21 (2) 84.48±2.76 (4) 76.48±3.95 (2)
Cub1 80.42±6.27 (2) 84.86±3.57 (2) 76.08±6.21 (2)
Cub2 84.97±3.47 (2) 84.36±3.34 (2) 77.26±3.62 (2)
Lag 79.52±4.33 (4) 82.56±5.90 (4) 74.70±2.83 (2)

* Results present F-score [mean±SD]; the segment size δt for each
value is shown in brackets; highest mean performance for each
classifier and room configuration is shown in bold face; highest
mean performance for each classifier for interpolation methods
are shown in italics.

as F-score = 2.P.R/(P + R) where precision (P) and recall
(R) are used as per the standard definitions. In contrast
to accuracy, F-score provides a better view of the classifier
performance, specially for data sets with imbalanced class
distributions as in our case (see Table 1), because F-score is
not biased towards the majority class [14]. We also present
our final results using accuracy, precision, recall and speci-
ficity for completeness.

We obtained activity recognition performance using a 10-
fold cross validation strategy. We placed each trial (a contin-

uous recording of a broadly scripted activity sequence from
a single participant) randomly in tandem. Then we subdi-
vided the data set into 10 portions (folds) where each fold
constitutes complete activity sequences as required by the
CRF classifier. Our model selection strategy was to select
the model with highest F-score for validation.

We initially evaluated activity recognition performance for
features possible form raw data stream and features possible
from interpolated acceleration signal. Then we further eval-
uated activity performance based on different feature sets.

4.1.1 Raw and interpolated acceleration data fea-
tures

We obtained activity recognition performance for each inter-
polant (see Table 2) based on segment sizes δt ∈ {2, 4, 8, 16}
for each classifier. Figure 5 and Fig. 6 present activity recog-
nition performance for the two data sets with the three clas-
sification models. Table 3 presents the highest performing
classifiers for each interpolation method for both data sets,
i.e. Roomset1 and Roomset2. Raw is used with features
ACC∪RFID which can be obtained without interpolation.
Activity recognition performance for the interpolants were
obtained using features ACC ∪ RFID ∪ INT . From these
results we can observe that, in 4 out of 6 instances, perfor-
mance (i.e. mean F-score) of Cub2 is higher but statisti-
cally insignificant compared to other interpolation methods
(excluding Raw). This general consistency is because the
Cub2 interpolant is able to provide better approximation for
acceleration signals when compared to Lin and Cos inter-
polants. Furthermore, noisy acceleration data have a lower
influence on Cub2 compared to Cub1 and Lag because Cub2
require lower number of data points (N = 3) with respect
to Cub1 (N = 4) and Lag (N = 5) for interpolation. Given
the sparse nature of the data stream, interpolants that re-
quire more number of data points such as Cub1 and Lag



Table 4: Best activity recognition performances (mean F-score) for each classification model.
Interpolant Accuracy Precision Recall Specificity F-score
(δt)a (mean±SD) (mean±SD) (mean±SD) (mean±SD) (mean±SD)

Roomset1

SVMlin Cub2 (4 s) 98.00±0.41 87.87±2.55 83.44±1.72 98.61±0.30 84.96±1.23
SVMrbf Raw (8 s) 98.43±0.41 90.39±2.70 87.42±1.42 98.82±0.47 88.45±1.68
CRF Lin (2 s) 97.28±0.39 85.97±2.43 82.35±3.08 97.94±0.22 83.73±2.40
Roomset2

SVMlin Cub2 (2 s) 99.09±0.47 87.06±4.10 84.00±2.90 98.70±0.56 84.97±3.74
SVMrbf Raw (8 s) 99.18±0.34 90.97±4.11 83.88±2.04 98.55±0.79 85.53±2.86
CRF Raw (16 s) 98.37±0.58 83.68±6.50 78.29±3.58 96.23±1.12 79.99±4.76

a Corresponding segment sizes that yield the best performance is given in brackets next to prepro-
cessing methods

* Model parameters - SVMlin: [Roomset1 :c = 20; Roomset2 :c = 25]; SVMrbf :[Roomset1 :c =
25, γ = 2−1; Roomset2 :c = 29, γ = 2−7]); and CRF: [Roomset1 :λ = 8.5; Roomset2 :λ = 1.6]

result in inclusion of temporaly distant sensor observations
for successful interpolation (see Section 3.3). This also re-
sults in poor approximations of missing acceleration data as
the temporaly distant observations are most likely to belong
associated with different activities. Therefore, Cub2 is able
to produce more informative features for AR. On the other
hand Lag depicted the lowest performance among all the in-
terpolants. The main reason is that Lag is more influenced,
compared to others, by data stream sparsity as it requires
five data points. Additionally, if number of data points, N ,
required for interpolation is N < 5, then sensor observations
are augmented as stated in the algorithm in Algorithm 1.
Although augmenting sensor observations is necessary to re-
duce interpolation errors, augmenting higher number of sen-
sor observations may significantly change the activity pat-
terns represented in acceleration data. Therefore, increasing
the number of augmented sensor observations, as in the case
of Lag, adversely affect extracted features and subsequently
results in further decreasing AR performance.

From Fig. 5 and Fig. 6, and also from Table 3, it is evident
that different classification models responded differently to
the interpolated data streams. SVMlin was able to achieve
performance improvements of 2% for Roomset1 and 3% for
Roomset2 with interpolated data. CRF only depicted a
0.6% performance improvement for Roomset1. In the case
of SVMrbf , although interpolation has increased the perfor-
mance for segment sizes δt = 2 s and δt = 8 s for Roomset2
data set (see Fig. 6), but in general, interpolation has de-
graded the performance in SVMrbf . This is mainly due to
the use of RBF kernel in SVMrbf which is more sensitive to
noise in the features. This feature noise is mainly attributed
by the noise inherent in the acceleration data. Since acceler-
ation data is used to calculate additional features, the noise
in the acceleration data have a greater influence on inter-
polated features. Although our data stets are imbalanced,
F-score for all the classes depicted good recognition perfor-
mance.

Table 4 presents best activity recognition performances achi-
eved by each classification model. From Table 4, it is evident
that SVMrbf classifier with raw acceleration signals has out-
performed (mean F-score) the other activity classification
models for both data sets. Although improvements in mean

performance was obtained using additional features possi-
ble with interpolated data (INT ), no statistically significant
improvement was observed, therefore, we further investigate
activity recognition performance based on different feature
sets: i) time-domain biomechanical features from raw ac-
celeration data (ACC); ii) features based on information
from the RFID platform (RFID); iii) featured possible from
the raw data stream (ACC ∪RFID); and iv) raw accelera-
tion based time-domain biomechanical features and features
from interpolated acceleration signals using best interpola-
tion methods (based on mean F-Score) for each classifier (see
Table 3) (ACC ∪ INT ).

4.1.2 Comparing performance of feature sets
Fig. 7 and Fig. 8 illustrate AR performance for feature sets
ACC, RFID, ACC∪RFID and ACC∪INT for Roomset1
and Roomset2 respectively. It is interesting to note that,
when features from acceleration signals are compared, i.e.
ACC and ACC ∪ INT , using interpolated acceleration sig-
nals have significantly (p < 0.05) improved AR performance
across all classifiers. This performance improvement is hid-
den in Fig. 5 and 6, because as illustrated in Fig. 7 and Fig. 8
incorporating the feature set RFID with ACC also depicted
a significant performance improvement over ACC feature set
for all classifiers. This clearly indicates that RFID com-
plements ACC similarly to INT for obtaining contextual
information for AR and hence we can successfully recognize
activities without features not readily obtained from sparse
acceleration data.

When activity recognition performance using feature sets
that include INT are considered, in general, activity recog-
nition performance has decreased with segment size δt; seg-
ment size δt = 2 s has outperformed other segment sizes (see
Fig. 5, 6, 7 and 8). Increasing the segment size results in sen-
sor observations from previous activities to be considered for
interpolation resulting extraction of less discriminative val-
ues for features. We can observe a similar pattern when
the ACC feature set is considered, mainly due to the incor-
rect values assumed for the features ∆vz and ∆dz as they
are approximated by integrating the acceleration signal over
the segment.

However, increasing δt has a lower influence on the RFID
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Figure 7: Roomset1 real-time activity recognition performance for different feature sets (ACC: features
from raw acceleration; RSSI: features from RSSI; INT : features from interpolated acceleration signal).
Interpolation methods used for SVMlin:Cub2; SVMrbf :Cub2; CRF:Lin
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Figure 8: Roomset2 real-time activity recognition performance for different feature sets (ACC: features
from raw acceleration; RSSI: features from RSSI; INT : features from interpolated acceleration signal).
Interpolation methods used for SVMlin:Cub2; SVMrbf :Cub1; CRF:Cub2
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Figure 9: Mean time taken to extract a feature vec-
tor using a single segment for each preprocessing
method in Table 2 for different segment sizes.

feature set as the feature MI2, which is calculated based on
the segment, is not influenced by the inter sensor observation
time intervals (i.e. sparsity) as with feature sets ACC and
ACC ∪ INT . In general, optimum segment size that results
in more discriminative activity recognition models for fea-
tures based on acceleration data (ACC and ACC ∪ INT ) is
different to that of features based on the information from
RFID platform (RFID). Therefore, when the same seg-
ment size is used to extract all the features (ACC∪RFID∪
INT ), overall performance decreases. This has largely in-
fluenced the SVMrbf classifier depicting a performance de-
crease when using all the features (ACC ∪ RFID ∪ INT )
(see Fig. 5 and 6). This indicates that using different seg-
ment sizes to extract features from these different informa-
tion sources may result in activity prediction models with
higher performance.

4.2 Interpolation Cost
Time taken for interpolating the acceleration data stream
and extracting additional features can be viewed as the cost

incurred to obtain an improvement in activity recognition
performance. We considered the time taken to interpolate
and extract features together in contrast to treating them
separately because interpolation is required to condition the
data stream before extracting additional features (see Sec-
tion 3.4).

We obtained mean time to generate a feature vector for a
single segment based on different segment sizes because the
number of data points to be considered for feature extraction
increases linearly with segment size. We have investigated
the interpolation methods summarized in Table 2. Results
in Fig. 9 are obtained using Matlab (version: 8.2.0.701) on a
machine running Windows 8.1 operating system with 8 GB
Random Access Memory and x-64 processor with 4 cores
running at 2.40 GHz (Intel Core i7-3630QM @ 2.4 GHz).

Fig. 9 shows the mean time taken to generate a feature vec-
tor for a single segment using each interpolation method in
Table 2. As expected, time taken to generate a feature vec-
tor using interpolated acceleration is at least 5 folds greater
than that of using Raw data. Furthermore, increasing the
segment size linearly increases the mean time for generat-
ing a feature vector and this is associated with the linear
increase in samples with the segment size.

These results (see Fig. 9) also depicts that the mean time
taken by each interpolant depends on the complexity of the
interpolant. For example, Lag showed the highest mean
time taken as it required the most number of data points,
i.e. N = 5.



5. CONCLUSIONS
In this study, we evaluated the use of online interpolation for
real-time activity recognition using sparse and noisy accel-
eration data streams from a wearable passive RFID sensor.
Online interpolation enabled readily computing features re-
quiring data streams with regular sampling rates.

There are two main findings from this study. Firstly, when
only acceleration from sensor tags are considered, features
obtained using interpolation significantly boost the activity
recognition performance compared to time-domain biomec-
ahincal features from raw acceleration data. Secondly, fea-
tures based on information from an RFID platform can also
significantly improve activity recognition performance and
achieve comparable results to activity recognition models
built using additional features possible from interpolation.
This indicates that features from the RFID platform can be
successfully substituted to replace the additional features,
such as FFT based features, possible from interpolated ac-
celeration data to achieve similar or better activity recog-
nition performance. On the other hand, RFID deployment
agnostic activity recognition models can be learnt using fea-
tures based only on acceleration data while enjoying the ad-
vantages provided by sensor tags but with a considerable
real-time prediction delay (> 400% compared to Raw).

There are several future directions to this study. Firstly, we
have only considered engineered features that were success-
fully used in previous AR research but feature learning [4,27]
with interpolated acceleration data from passive sensors to
further improve AR performance should be considered in fu-
ture. Secondly, we have only utilized two data sets with a
limited number of activities related to ambulatory monitor-
ing in the context of monitoring older people in hospital and
nursing homes. Therefore, further investigation using sparse
data streams when such data sets become available will be
needed in future to further generalize the results we have
presented. Finally, the investigated feature sets depicted
their respective highest performances for different segment
sizes as shown in Fig. 7 and Fig. 8. Therefore, we expect to
observe an improvement in activity recognition performance
when using ACC∪RFID∪INT with features extracted us-
ing the respective segment sizes that resulted in the highest
performance. This also needs to be further investigated in
future.

In conclusion, this study provides a basis for many ubiqui-
tous research and applications based on real-time activity
recognition using wearable passive sensors, especially pas-
sive sensors enabled RFID tags.
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Gesture spotting with body-worn inertial sensors to
detect user activities. Pattern Recognition,
41(6):2010–2024, 2008.



[17] D. Karantonis, M. Narayanan, M. Mathie, N. Lovell,
and B. Celler. Implementation of a real-time human
movement classifier using a triaxial accelerometer for
ambulatory monitoring. IEEE Trans. Inf. Technol.
Biomed., 10(1):156–167, 2006.

[18] T. Kaufmann, D. C. Ranasinghe, M. Zhou, and
C. Fumeaux. Wearable quarter-wave folded microstrip
antenna for passive UHF RFID applications. Int. J.
Antennas Propag., 2013, 2013.

[19] R. Keys. Cubic convolution interpolation for digital
image processing. IEEE Transactions on Acoustics,
Speech and Signal Processing, 29(6):1153–1160, 1981.

[20] A. M. Khan, A. Tufail, A. M. Khattak, and T. H.
Laine. Activity recognition on smartphones via
sensor-fusion and KDA-based SVMs. Int. J. Distrib.
Sens. Netw., 2014:e503291, 2014.

[21] N. C. Krishnan and D. J. Cook. Activity recognition
on streaming sensor data. Pervasive and Mobile
Computing, 2012.

[22] M.-W. Lee, A. M. Khan, and T.-S. Kim. A single
tri-axial accelerometer-based real-time personal life log
system capable of human activity recognition and
exercise information generation. Pers. Ubiquitous
Comput., 15(8):887–898, 2011.

[23] F. Miskelly. A novel system of electronic tagging in
patients with dementia and wandering. Age and
Ageing, 33(3):304–306, 2004.

[24] S. A. Muhammad, B. N. Klein, K. V. Laerhoven, and
K. David. A feature set evaluation for activity
recognition with body-worn inertial sensors. In
R. Wichert, K. V. Laerhoven, and J. Gelissen, editors,
Constructing Ambient Intelligence, number 277 in
Communications in Computer and Information
Science, pages 101–109. Springer Berlin Heidelberg,
2012.

[25] B. Najafi, K. Aminian, A. Paraschiv-Ionescu, F. Loew,
C. Bula, and P. Robert. Ambulatory system for
human motion analysis using a kinematic sensor:
Monitoring of daily physical activity in the elderly.
IEEE Trans. Biomed. Eng., 50(6):711–723, 2003.

[26] M. Patel and J. Wang. Applications, challenges, and
prospective in emerging body area networking
technologies. IEEE Wireless Commun. Mag.,
17(1):80–88, 2010.
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