
0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2740297, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, YY 2017 1

PUF-FSM: A Controlled Strong PUF
Yansong Gao, IEEE Student Member, Hua Ma,

Said F. Al-Sarawi, IEEE Member, Derek Abbott, IEEE Fellow and Damith C. Ranasinghe, IEEE Member

Abstract—Existing strong controlled physical unclonable func-
tion (PUF) designs are built to resist modelling attacks and they
deal with noisy PUF responses by exploiting error correction
logic. These designs are burdened by the costs of the error
correction logic and information shown to leak through the
associated helper data for assisting error corrections; leaving the
design vulnerable to fault attacks or reliability-based attacks.
We present a hybrid PUF–finite state machine (PUF-FSM)
construction to realize a controlled strong PUF. The PUF-FSM
design removes the need for error correction logic and related
computation, storage of the helper data and loading it on-chip
by only employing error-free responses judiciously determined
on demand in the absence of the underlying PUF—an Arbiter
PUF—with a large challenge response pair space. The PUF-FSM
demonstrates improved security, especially to reliability-based
attacks and is able to support a range of applications from
authentication to more advanced cryptographic applications built
upon shared keys. We experimentally validate the practicability
of the PUF-FSM.

Index Terms—Physical uncloanble function, APUF, error-free
responses, statistical model, modeling attacks, fault attacks.

I. INTRODUCTION

The physical unclonable function (PUF), a hardware se-
curity primitive, exploits manufacturing variations to extract
secrecy on demand [1], [2]. Since the advent of the silicon
Arbiter PUF (APUF) in 2002 [3], the PUF community has
been pursuing so-called strong PUFs that not only have a very
large challenge response pair (CRP) space but are also resilient
to modeling attacks. The instance-specific CRP behavior of
strong PUFs is naturally appealing for lightweight authenti-
cation protocols [2], [4], [5]. Beyond authentication, strong
PUFs are also employed for key generation and more advanced
cryptographic protocols, e.g., key exchange and oblivious
transfer [?], [6]. However, a practical lightweight strong PUF
realization compatible with current CMOS technology remains
a challenging proposition in the face of modeling attacks
responsible for breaking previously deemed strong PUFs
including the XOR-APUF, Feedforward APUF, Lightweight
Secure PUF [7] and even the Slender PUF [8], [9].

Yu et al. [10] recently presented a practical strong PUF
by placing an upper bound on the available number of CRPs
to an adversary. To be precise, gaining new CRPs has to
be explicitly authorized by the trusted entity—this concept
of limiting access to CRPs is akin to controlled PUFs [11],
detailed in Section II-B. Yu et al. [10] further introduced a
PUF device side nonce to prevent fault attacks or reliability-
based attacks [8], [9].

Corresponding author: yansong.gao@adelaide.edu.au
Y. Gao, S F. Al-sarawi, D. Abbott are with the School of Electrical and

Electronic Engineering, The University of Adelaide, SA 5005, Australia. e-
mail: {said.alsarawi, derek.abbott}@adelaide.edu.au.

Y. Gao, H. Ma and D. C Ranasinghe are with the Auto-ID Labs, School of
Computer Science, The University of Adelaide, SA 5005, Australia. e-mail:
{mary.ma, damith.ranasinghe}@adelaide.edu.au.

We acknowledge the support from Australian Research Council Discovery
Project grant DP140103448 and China Scholarship Council (201306070017).

We continue the pursuit of a practical and lightweight
controlled strong PUF dubbed the PUF-FSM. Through the
ability to use challenges capable of generating error free
responses, the PUF-FSM is able to generate key bits without
error correcting post-processes that have hitherto been always
required in PUF-based key generators [12]. Further, the ability
to remove the information leakage, possible with the use of
error correcting codes recently exploited in [8], [9], [13],
essentially removes an attack vector from a PUF-FSM key
generator. For authentication, the PUF-FSM avoids one major
limitation of [10] in terms of available secure authentication
rounds. Contributions of our work are:

• We propose a design for a controlled strong PUF—PUF-
FSM—with improved lightweight characteristics by em-
ploying a large number of available error-free responses
determined in the absence of the underlying strong PUF;
an APUF in our study. The PUF-FSM, to the best of our
knowledge, is the first controlled PUF without using error
correction code (ECC) logic along with the associated
helper data and with an explicit design consideration to
counter reliability-based attacks.

• We demonstrate that the PUF-FSM has significantly
improved security through its resilience to various plau-
sible modelling attacks including reliability-based attacks
in [13]. We validate the practicability of the PUF-FSM
through experimental results, compare it with other re-
lated works, and briefly discuss its applicability to a range
of security applications.

Section II introduces related work. Section III details the PUF-
FSM design and analyses its security. Experimental validation
of the PUF-FSM is performed in Section IV while applications
are presented in Section V.

II. RELATED WORK

A. APUF Model for Error-Free Response Generation

The APUF consists of k stages of two 2-input multiplexers
or any other units forming two signal paths [1]. To generate a
response bit, a signal is applied to the first stage input, while
the challenge C determines the signal path to the next stage.
The input signal will race through each multiplexer path (top
and bottom paths) in parallel with each other. At the end of the
APUF architecture, an arbiter, e.g., a latch, determines whether
the top or bottom signal arrives first and hence results in a logic
‘0’ or ‘1’ accordingly. Hence, it is the time delay difference,
tdif , of an APUF challenge that determines its response.

It has been shown that an APUF can be modelled, where the
APUF response given an unseen challenge can be predicted
with high accuracy using a learned model—usually with
modeling attacks employing machine learning techniques [7].
Thus, the tdif can eventually be predicted based on the learned
APUF model without physical measurements. Recent works
[14], [15] show that tdif comprises of two important pieces of



0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2740297, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, YY 2017 2

information: i) the sgn(tdif ) determines the binary response;
and ii) the magnitude of tdif indicates the reliability of this
response. If the tdif is far from zero, then this gives full
confidence that such a challenge can reproduce the response
without an error. In PUF-FSM, we show how to exploit the
bit level reliability information from such a model to build a
secure, controlled strong PUF.

B. Controlled PUF

The controlled PUF (C-PUF) [11], [16] proposed by
Gassend et al. is a strong PUF construction. It combines an
underlying PUF with control logic limiting the ways in which
the PUF can be evaluated. In practice, the C-PUF is built so
that the underlying PUF and control logic play complementary
roles. As illustrated in Fig. 1 (a), the PUF prevents invasive
attacks on the control logic, whilst the control logic protects
the PUF from protocol level attacks. For example, the control
logic is enclosed by metal wire tracks running above and below
the circuitry. These tracks introduce path delays that the APUF
uses to determine its response—so if the tracks are broken
while physically probing the control circuitry, the digital secret
is altered or destroyed [11]. The challenge and response in a
C-PUF are pre- and post-processed, e.g., hashed, respectively,
and thus the control logic can halt adaptive evaluations of
PUFs without permission from a trusted entity [10]. Previous
studies [11], [16] require ECC logic and the associated helper
data to stabilize the noisy PUF responses before hashing.
However, the ECC logic is usually expensive, especially for
low-end devices. Most importantly, employment of helper data
exposes the controlled PUF to modeling attacks exploiting
noise side-channel information [9], [13], [17].

C. FSM based Locking Mechanisms

Recent FSM based locking methods together with PUFs
have been used in the literature for applications such as IC
active metering, protecting or locking intellectual property
(IP) [18]–[20] and preventing netlist reverse-engineering [21].
For instance, HARPOON [21] is a gate-level obfuscation-
based design that provides security at multiple stages of the
IC life cycle during fabrication, test and deployment. The
work in [20] enables an FPGA user to pay a license fee for
the specific IP and FPGA employed and, thus, reduce costs
incurred by users while protecting the revenue of the IP core
developer and FPGA vendor. In these studies, a FSM is used
as an obfuscation technique where stability of PUF responses
need to be specifically considered and the aim is not to realize
a PUF based security primitive.

In contrast, we address instability of PUF responses by
winnowing the challenges that generate unstable responses and
combine this approach with a FSM and a random number
generator (RNG) based response obfuscation method to: i)
hide the direct relationship between challenges and responses;
ii) eliminate the attacks that exploit reliability information
from PUF response bits obtained from repeated evaluations;
and iii) still realize an exponential challenge-response space
to build a strong controlled PUF—a cryptographic primitive.
Using a PUF-FSM architecture to realize a strong PUF-based
security primitive creates the ability to build multiple security
services, as highlighted in Section V.

PUF FSM

hash

S OE

C

key

R

RNG

noncecontrol logic

(a) (b)

PUF

control logic

ECC

helper data

R

key

C

hash

hash

Figure 1. (a) A controlled PUF (C-PUF) construction [11], [16]. (b) General
structure of the PUF-FSM. Only the correct sequential challenges Cset can
activate the enable signal SOE. If the enable signal SOE is disabled, the hash
output is meaningless as it is a result of random values. Otherwise, a key is
generated based on part of the response R, Rsecret, and the nonce, where
the key = HASH(Rsecret, nonce).

S1

S21

S22

S23

1 2TR1 2

00
01

0110

1001

1100

1001

01
11

level

=3
depth

TR TR TR

S3

S41

S42

S43

3 4TR3 4

10
10

1000

0011

1011

1001

01
00

TR TR TR

S5

S61

S62

S63

5 6TR5 6

11
10

0101

0000

1101

0001

11
00

TR TR TR

SOE
D

=7L

Figure 2. FSM example with seven levels (L = 7) and three depths (D = 3).
III. PUF-FSM: DESIGN AND SECURITY ANALYSIS

A. PUF-FSM Structure

A generalized construction of a PUF-FSM shown in
Fig. 1 (b). It consists of an underlying PUF, a FSM, a hash
function and an RNG block. Similar to prior work [10], the
direct PUF responses can only be evaluated by a trusted entity
(e.g., the server) in a secure environment during the PUF
provisioning phase to build APUF statistical model(s), and
the direct access is destroyed afterwards, e.g., through fusing
a wire.

During deployment, a set of n sequential challenges, Cset,
is issued by the trusted entity and applied to the PUF-
FSM, corresponding error-free responses R with length n are
produced internally. The R is sequentially fed into the FSM to
direct the transitions of the FSM states where the FSM is reset
to S1 before the operation. Only a series of correct transition
conditions TR—a specific response substrings enabling a state
transition to the next state—is able to guarantee the FSM
traversing through to the SOE state to activate the key output.
Thus, only the server who possesses the APUF model is capa-
ble of issuing a correct Cset to activate the SOE to generate a
meaningful output as a key. The key is HASH(Rsecret, nonce)
where Rsecret is a substring of R; formation of Rsecret will
be described soon. The RNG prepares two random strings, the
output presents the first random string to replace the Rsecret in
the formation of the key when the SOE is disabled, the second
random string forms the nonce.

An exemplary FSM construction is depicted in Fig. 2. At
the beginning of the PUF-FSM operation, the FSM resets to
its initial state S1. Let us assume that the TR1 is 0110, then
S1

0110−−−→ S22. Similarly if the TR1 = 0001, then S1
0001−−−→ S21.

If TR1 /∈ {0001, 0110, 1001}, or in other words the input is

in TR1, then S1
TR1−−→ S1—a self transition where the FSM

remains at its current state. In this example, for odd states
S1, S3, S5, there are D edges or transitions conditioned on D



0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2740297, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, YY 2017 3

3

0111 0110 1001 0011 1100 0000 1111 1010 1001 1100 0000 1100 0111 0011

S22S1 S22S22 S3S3 S41S3 SOE

n bits R

TR1 1TR TR2 TR2 TR2 TR 3TR 3TR 4TR
5TR 5TR 6TR

S5 S5 S63

Rsecret

key= Rsecret , nonce)(hash

Figure 3. Part of the n-bit R, Rsecret, is hashed to generate the key. All the
remaining bits after reaching the SOE state are not contributing to the key
(here we use the FSM example in Fig. 2 and the set of transitions followed
are marked by the red dotted line).
inputs to lead to one of the following D states while transitions
from other states are conditioned on a single input.

While other FSM structures can be envisioned, the FSM
in this case study has L—always an odd number—of state
layers (levels) where each even internal layer has D parallel
states. At least L−1 transitions are required to reach the SOE

state. Both TRl and TRl are 4-bit in our example, therefore
the maximum number of transitions that can be employed is
n
4 , where we assume that n is always a multiple of 4 for
convenience. Given that we need at least L − 1 transitions,
i.e. TRi for i = {1, ..., L− 1}, the maximum number of self-
transitions nmax = n

4 − (L − 1). In practice, SOE can be
activated in a manner that employs L − 1 of TRl and n of
TRl inputs subjected to n ≤ nmax. A meaningful key will be
generated only after all n bits in R are fed into the FSM—or
after n clock cycles—and the SOE state is reached. The key
is a hash of a part of the response R, specifically, the input
bits defined by the sequence of TRl and TRl employed to reach
the SOE state. Illustration of the key formation is shown in
Fig. 3, while the traversed path is illustrated in Fig. 2 using the
dotted red line. Once SOE state is reached, the rest of the input
sequence is ignored and will not be used to form the Rsecret

hashed to generate the key. It is worth stressing here that the
the response bits beyond Rsecret are still fed into the FSM as
redundant bits to hide the length of Rsecret = (L−1)+n where
n is determined, and therefore only known, by the server.

B. Security Analyses

Adversary Model: We adopt the adversary model used for
the C-PUF [11], [16]. Hence: i) physical attacks on the control
logic or an attempt to probe the internal PUF will alter or
even destroy the PUF itself; and ii) an adversary is capable of
eavesdropping on the communication channel and arbitrarily
applying challenges to the PUF-FSM interface to observe the
output. Furthermore, we assume the nonce is visible and the
netlist of the PUF-FSM design is publicly known. Then, the
objective of the adversary is to obtain useful information to
learn an accurate model of the underlying APUF.

Brute-Force Attacks: The probability of finding a mean-
ingful key by guessing a correct Cset without the assistance
from the trusted entity is:

P =

(
D

2nTR

)L−1
2

×
(

1

2nTR

)L−1
2

, (1)

where the nTR is the length of a TRl. In the example in Fig. 2,
the nTR = 4. For each odd layer (e.g., S1, S3), the probability
of guessing nTR challenges producing a correct transition edge

is D
2nTR

, while the probability of guessing nTR challenges
producing a correct transition edge given an even layer is

1
2nTR

. As an example, setting L = 41 and D = 3 implies
that P ≈ 1

2128 , thus, making a successful attack infeasible.
Modeling Attacks: In PUF-FSM, arbitrary CRP collection

is disabled from any party except the trusted entity during
the secure enrollment phase. Subsequently, the generation of
the response is controlled by the sever through the FSM and
only the hash of the response and a nonce are exposed. Thus,
modeling attacks requiring direct challenge-response pair in-
formation [7] are prevented since the responses generated from
a PUF-FSM no longer bear a relationship to the received
challenge.

Unlike previous modeling attacks, recent reliability-based
modelling attacks [9] do not require the knowledge of the
response for a given challenge but only the binary reliability
of the generated response from the challenge.

Now, we examine a method, similar to fault-injection
attacks, for discovering challenges that produce unreliable
responses by observing the PUF-FSM output when a device
nonce is not used. We assume that an eavesdropping adversary
has a potential way to determine the reliability of a response
to a challenge through exhaustive search under the condition
that a priori challenge set Cset has been eavesdropped. We
also assume that the adversary has full access to the PUF-
FSM’s challenge-response interface. The adversary chooses an
unused challenge cx 6∈ Cset to replace one challenge ci in the
eavesdropped challenge set Cset to observe the output of the
PUF-FSM. Then through repeated evaluations, the adversary
can determine if cx generates unreliable responses by simply
observing any alterations in the hashed output of the PUF-
FSM. Hence, through exhaustive searching, other unreliable
challenges can be determined to mount a reliability-based
modelling attack.

However, employing a nonce, as in [10], prevents an ad-
versary from observing variations in the hashed output using
repeated queries to the PUF-FSM with adaptive challenges to
gather reliability related information based on eavesdropped
Cset. This is because the nonce is refreshed and hashed with
the APUF response for each evaluation. Thus, the discovery of
unreliable challenges through adaptive and repeated queries to
mount a reliability-based modelling attack [8], [9] is prevented.

Optical Emission Attacks: Without proper protections,
similar to NVMs (non-volatile memories), APUFs are vul-
nerable to optical emission based attacks [22]. However,
these attacks usually require significant skills and specialized
equipment. Nonetheless, there are several countermeasures
against optical emission attacks [23]. Interconnect meshes
can be used to prevent optical emission attacks performed
from a chip’s frontside; for backside optical emission attacks,
through-silicon-via (TSV) technologies can be exploited as a
countermeasure. Additionally, optical interaction is a low-cost
alternative to protecting ICs against backside optical emission
attacks [23].

Timing and Power Attacks: Although, power and timing
side-channel attacks together with machine learning methods
have been demonstrated in attacks to break APUFs [13],
[24], these attacks appear to be inapplicable in practice. For



0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2740297, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, YY 2017 4

Table I
COMPARING THE PUF-FSM

C-PUF [11], [16] Lockdown
PUF [10] PUF-FSM

ECC and helper data X X X

TRNG X X X

Rounds of Authentication ∞ 1000 (typical) ∞

Key generation and other applications X X X

Tolerated error rate 15.0% 4.3% 16.7%

Area (GE) 2.1k 1.1k 1.1k

Reliability-based modeling attacks X X X

example, the required accurate timing measurements may not
be available on-chip [13]. Power analysis attacks require low
noise levels when repeatedly measuring power traces. There-
fore, in practice, an efficient countermeasure is to inject noise
into the circuit to prevent accurate power trace measurements.
For example, the RNG utilized in the PUF-FSM can be
operated in parallel when the responses are evaluated from
the APUF without extra area overhead to inject algorithmic
noise that is hard to be eliminated [13].

IV. EXPERIMENTAL VALIDATION AND COMPARISON

A. Experiment Setup and Results

We use a CRP dataset obtained from eight PDL (pro-
grammable delay line) APUFs implemented in eight different
FPGAs. Notably, the PDL APUF has the same topology of
the multiplexer based APUFs [15]. Each APUF is fed with
64,000 challenges, therefore, 64,000 CRPs are collected [25],
[26]. Each CRP is evaluated 128 times at the same operating
condition. Three temperature settings (5◦C, 35◦C, 65◦C) and
three voltage settings (0.95 V, 1.00 V, 1.05 V) under a given
temperature setting are tested.

We treat (35◦C, 1.00 V) as the nominal condition. We use
10,000 CRPs that are evaluated under the nominal condition
to learn an APUF model. It takes less than fifteen seconds to
enroll each APUF by using MATLAB 2012b software running
on Intel i7-3770CPU@3.4GHz CPU with 16GB RAM.
B. Error-free Response Selection Results

The APUF model has a prediction rate of 92.41%. This
lower rate attributes to the usage of PDL based APUFs on
FPGAs, that tend to be more noisy, rather than multiplexer
based APUFs in an ASIC design. We found that the maximum
PUF response error rate is 16.68%, which is almost four times
larger than the 4.3% error rate of the ASIC APUF in [10].

By implementing reliable response selection, we are able to
select more than 1.8 × 1017 error-free responses from a 64-
stage APUF even in the presence of response error rates up to
16.68%. Such an extremely large number of available error-
free responses is adequate for almost all practical applications.
In addition, the error-free selection based on APUF model
does not deteriorate other PUF performance metrics such as
the randomness. We refer interested readers to [15] for details.

C. Comparisons
We focus on comparing the PUF-FSM with the original

C-PUF [11], [16] and the recent lockdown PUF [10]. As
highlighted in [10], [27], the area overhead is the most
significant concern while power and delay overheads have

minor impact as the security services such as authentication
and key generation built upon a C-PUF are not continuously
employed operations. Thus, we concentrate on assessing and
comparing the area overhead.

In Table I, all three works employ APUFs. A 64-stage APUF
implemented in an ASIC design requires 260 GE (where a
GE is equivalent to the area required by a two-input NAND
gate [10]). The lockdown PUF [10] uses four APUFs, while
the other approaches are built on a single APUF. We selected
the SPONGENT lightweight block cipher, which costs 737
GE to produce a 128-bit output, for hashing responses [28].
The FSM is implemented by D flip-flops; each consuming
five GE. Hence, we can see that the area overhead of the
FSM is relatively small and negligible as also demonstrated
in [19]–[21]. For example, the number of flip-flops needed is
log2N state, where Nstate is the number of states of the FSM;
thus, even if 128 states are utilized, only 35 GE are needed
to realize the FSM. The RNG can be implemented by using
metastable PUF responses either from SRAM PUFs [29] or
APUFs [30] by exploiting avaialble on-chip resources. Such an
RNG eliminates potential reliability-based modeling attacks on
the C-PUF [9], [13] as detailed in Section III-B. Nonetheless,
the TRNG is not restricted to PUF-based realizations, one can
use other TRNG designs [31], [32].

As shown in Table I, the area overhead of the PUF-FSM
is almost halved in comparison with the original C-PUF 1.
In particular, the PUF-FSM eliminates the attack vectors
exposed by the requirement for error correction and helper
data, such as: i) helper data manipulation when it is stored
off-chip and loaded on-chip during key generation; and ii)
reliability-based modeling attacks [9], [13]. Furthermore, we
also remove the on-chip storage burdens imposed by on-
chip helper data [17]. In comparison with the PUF lockdown
technique [10] with similar overhead, the PUF-FSM eschews
the limitation imposed on the number of authentication rounds.
In addition, as a security primitive, the PUF-FSM can support
applications beyond authentication as detailed in the Section V.
Further, the PUF-FSM, through the judicious challenge se-
lection method, realizes significantly improved tolerance to
response unreliability without ECC logic.

V. APPLICATIONS

A. Mutual Authentication

Recall that only a trusted entity has the capability of issuing
a correct challenge sequence to activate the SOE signal. As a
consequence, only the PUF-FSM device and the trusted entity
can compute Rsecret. When the PUF-FSM is transferred to
the user, the trusted entity generates a Cset and transmits
it to the user, possibly through an insecure communication
channel. The user presents the Cset to the PUF-FSM and
sends the PUF-FSM response—nonce and the hashed output—
back to the trusted entity. The trusted entity, by virtue of the
underlying APUF model, can emulate responses and hence
compute HASH(Rsecret, nonce), and compares it with the

1Area is not reported for the C-PUF in [11], [16]. We use the optimized
ECC decoder area in [27]. We exclude the on-chip helper data storage
overhead and we assume the pre- and post-hash, see Fig. 1 (a), share the
same hash logic, to obtain a minimum cost estimate for C-PUF.



0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2017.2740297, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. YY, YY 2017 5

received hash value. A match authenticates the PUF-FSM.
Once the PUF-FSM device is authenticated, the user applies
the same Cset to the PUF-FSM to obtain a refreshed response.
The user requests the refreshed response computed by the
trusted entity after transmitting only the nonce to the trusted
entity. The trusted entity is authenticated by the user only if the
computed output received is the same as the output produced
by the PUF-FSM held by the user. Thus, the PUF-FSM realizes
mutual authentication.

B. Key Exchange

Consider a key exchange scenario between a user and a
trusted entity. The user applies a shared Cset and sends the
nonce to the trusted entity. Now only the user who holds
the PUF-FSM and the trusted entity can generate the shared
key. The user obtains it from the PUF-FSM, while the server
computes it by hashing the Rsecret and the nonce—notably,
a key (shared key) is never directly exchanged between the
parties. Such a shared key between two parties enables a wide
variety of standard cryptographic protocols [11].

VI. CONCLUSION

We have presented a practical controlled strong PUF, PUF-
FSM, by: i) exploiting error-free responses determined in ab-
sence of an APUF; and ii) controlling the means of evaluating
the PUF by using an FSM based control logic. As a C-
PUF, PUF-FSM holds the promise of a cost-effective way
to increase resistance to various attacks. We experimentally
validated its practicability and compare it with other related
controlled PUF designs.

REFERENCES

[1] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proc. Design Automation
Conf. (DAC). ACM, 2007, pp. 9–14.

[2] F. Tehranipoor, N. Karimian, W. Yan, and J. A. Chandy, “DRAM-
based intrinsic physically unclonable functions for system-level security
and authentication,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 25, no. 3, pp. 1085–1097, 2017.

[3] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon phys-
ical random functions,” in Proc. Conf. Computer and communications
security. ACM, 2002, pp. 148–160.

[4] D. C. Ranasinghe and P. H. Cole, “Confronting security and privacy
threats in modern RFID systems,” in Proc. IEEE Fortieth Asilomar
Conference on Signals, Systems and Computers, 2004, pp. 2058–2064.

[5] C. H. K. Chen Zhou, Keshab K. Parhi, “Secure and reliable XOR
Arbiter PUF design: An experimental study based on 1 trillion chal-
lenge response pair measurements,” in Proc. 54th ACM Annual Design
Automation Conference, 2017, p. 10.

[6] U. Ruhrmair and M. Van Dijk, “PUFs in security protocols: Attack
models and security evaluations,” in Proc. IEEE Symp. Security and
Privacy, 2013, pp. 286–300.

[7] U. Ruhrmair, J. Solter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, “PUF modeling
attacks on simulated and silicon data,” IEEE Trans. Inf. Forensics
Security, vol. 8, no. 11, pp. 1876–1891, 2013.

[8] G. T. Becker, “The gap between promise and reality: On the insecurity
of XOR Arbiter PUFs,” in Cryptographic Hardware and Embedded
Systems (CHES). Springer, 2015, pp. 535–555.

[9] G. T. Becker, “On the pitfalls of using Arbiter-PUFs as building blocks,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst, vol. 34, no. 8,
pp. 1295–1307, 2015.

[10] M.-D. Yu, M. Hiller, J. Delvaux, R. Sowell, S. Devadas, and I. Ver-
bauwhede, “A lockdown technique to prevent machine learning on PUFs
for lightweight authentication,” IEEE Trans. Multi-Scale Comput. Syst.,
vol. 2, no. 3, pp. 146–159, 2016.

[11] B. Gassend, M. V. Dijk, D. Clarke, E. Torlak, S. Devadas, and P. Tuyls,
“Controlled physical random functions and applications,” ACM Trans-
actions on Information and System Security, vol. 10, no. 4, p. 3, 2008.

[12] M. Hiller, “Key derivation with physical unclonable functions,” Ph.D.
dissertation, Universität München, 2016.

[13] G. T. Becker, R. Kumar et al., “Active and passive side-channel attacks
on delay based PUF designs.” IACR Cryptology ePrint Archive, vol.
2014, p. 287, 2014.

[14] X. Xu, W. Burleson, and D. E. Holcomb, “Using statistical models
to improve the reliability of delay-based PUFs,” in Proc. Symp. VLSI.
IEEE, 2016, pp. 547–552.

[15] Y. Gao, H. Ma, G. Li, S. Zeitouni, S. F. Al-Sarawi, D. Abbott, A.-R.
Sadeghi, and D. C. Ranasinghe, “Exploiting puf models for error free
response generation,” arXiv preprint arXiv:1701.08241, 2017.

[16] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Controlled
physical random functions,” in Proc. IEEE Annual Computer Security
Applications Conf., 2002, pp. 149–160.

[17] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data
algorithms for PUF-based key generation: Overview and analysis,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 6, pp.
889–902, 2015.

[18] F. Koushanfar and G. Qu, “Hardware metering,” in Proc. Design
Automation Conf. ACM, 2001, pp. 490–493.

[19] F. Koushanfar, “Provably secure active ic metering techniques for piracy
avoidance and digital rights management,” IEEE Trans. Inf. Forensics
Security, vol. 7, no. 1, pp. 51–63, 2012.

[20] J. Zhang, Y. Lin, Y. Lyu, and G. Qu, “A PUF-FSM binding scheme
for FPGA IP protection and pay-per-device licensing,” IEEE Trans. Inf.
Forensics Security, vol. 10, no. 6, pp. 1137–1150, 2015.

[21] R. S. Chakraborty and S. Bhunia, “HARPOON: an obfuscation-
based SoC design methodology for hardware protection,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst, vol. 28, no. 10, pp. 1493–
1502, 2009.

[22] S. Tajik, E. Dietz, S. Frohmann, H. Dittrich, D. Nedospasov,
C. Helfmeier, J.-P. Seifert, C. Boit, and H.-W. Hübers, “Photonic side-
channel analysis of arbiter PUFs,” J. Cryptology, pp. 1–22, 2016.

[23] C. Boit, S. Tajik, P. Scholz, E. Amini, A. Beyreuther, H. Lohrke,
and J. Seifert, “From IC debug to hardware security risk: The power
of backside access and optical interaction,” in Proc. IEEE Int. Symp.
Physical and Failure Analysis of Integrated Circuits, 2016, pp. 365–
369.

[24] U. Rührmair, X. Xu, J. Sölter, A. Mahmoud, M. Majzoobi, F. Koushan-
far, and W. Burleson, “Efficient power and timing side channels for
physical unclonable functions,” in Cryptographic Hardware and Em-
bedded Systems – CHES. Springer, 2014, pp. 476–492.

[25] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques for design
and implementation of secure reconfigurable PUFs,” ACM Transactions
on Reconfigurable Technology and Systems, vol. 2, no. 1, p. 5, 2009.

[26] M. Majzoobi, F. Koushanfar, and S. Devadas, “FPGA PUF
using programmable delay lines,” in Proc. IEEE Int. Work-
shop on Information Forensics and Security (WIFS), 2010, DOI:
10.1109/WIFS.2010.5711471.

[27] V. Van der Leest, B. Preneel, and E. Van der Sluis, “Soft decision error
correction for compact memory-based PUFs using a single enrollment,”
in Cryptographic Hardware and Embedded Systems. Springer, 2012,
pp. 268–282.

[28] A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Ver-
bauwhede, “Spongent: The design space of lightweight cryptographic
hashing,” IEEE Trans. Comput, vol. 62, no. 10, pp. 2041–2053, 2013.

[29] Holcomb, Daniel E, W. P. Burleson, and K. Fu, “Power-up SRAM state
as an identifying fingerprint and source of true random numbers,” IEEE
Trans. Comput., vol. 58, no. 9, pp. 1198–1210, 2009.

[30] D. C. Ranasinghe, D. Lim, S. Devadas, D. Abbott, and P. Cole, “Random
numbers from metastability and thermal noise,” Electronics Letters,
vol. 41, no. 16, pp. 891–893, 2005.

[31] S. Srinivasan, S. Mathew, R. Ramanarayanan, F. Sheikh, M. Anders,
H. Kaul, V. Erraguntla, R. Krishnamurthy, and G. Taylor, “2.4 GHz
7mw all-digital PVT-variation tolerant true random number generator in
45nm CMOS,” in IEEE Symp. VLSI Circuits, 2010, pp. 203–204.

[32] F. Tehranipoor, W. Yan, and J. A. Chandy, “Robust hardware true random
number generators using DRAM remanence effects,” in Proc. IEEE Int.
Symp. Hardware Oriented Security and Trust, 2016, pp. 79–84.


