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ABSTRACT
Automatic recognition of human activities from time-series sensor
data (referred to as HAR) is a growing area of research in ubiqui-
tous computing. Most recent research in the field adopts supervised
deep learning paradigms to automate extraction of intrinsic fea-
tures from raw signal inputs and addresses HAR as a multi-class
classification problem where detecting a single activity class within
the duration of a sensory data segment suffices. However, due to
the innate diversity of human activities and their corresponding
duration, no data segment is guaranteed to contain sensor record-
ings of a single activity type. In this paper, we express HAR more
naturally as a set prediction problem where the predictions are sets
of ongoing activity elements with unfixed and unknown cardinal-
ity. For the first time, we address this problem by presenting a
novel HAR approach that learns to output activity sets using deep
neural networks. Moreover, motivated by the limited availability
of annotated HAR datasets as well as the unfortunate immaturity
of existing unsupervised systems, we complement our supervised
set learning scheme with a prior unsupervised feature learning
process that adopts convolutional auto-encoders to exploit unla-
beled data. The empirical experiments on two widely adopted HAR
datasets demonstrate the substantial improvement of our proposed
methodology over the baseline models.

CCS CONCEPTS
• Human-centered computing → Ubiquitous computing; •
Computing methodologies → Supervised learning by clas-
sification; Unsupervised learning; Neural networks; Multi-
task learning; Learning latent representations;
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1 INTRODUCTION
With the proliferation of low-cost sensing technologies as well
as the fast advancements in machine learning techniques, auto-
matic human activity recognition (HAR) using wearable sensors has
emerged as a key research area in ubiquitous computing [3, 9, 15, 23].
In this problem, high-level activity information is acquired through
analyzing low-level sensor recordings with the goal of providing
proactive assistance to users. Having created new possibilities in di-
verse application domains ranging from health-care monitoring to
entertainment industry, HAR has successfully sparked excitement
in both academia and industry. Nevertheless, due to the inherent
diverse nature of human activities, HAR faces unique methodologi-
cal challenges such as intra-class variability, inter-class similarity,
class imbalance, the Null class problem [4], the multi-class window
problem [23], and intermittent activity recognition problem [11]
to name a few. Accordingly, it is of great significance to propose
systematic approaches towards accurate recognition of activities
that triumph over the challenges.

While previous studies have explored both shallow and deep
architectures for a diverse range of HAR application scenarios,
multi-class classification has been their dominant approach for for-
mulating the problem. As such, sensor time segments obtained from
striding a fixed-size sliding window over the sensor data-streams
are assigned a single activity class, approximated based on the most
[22] or the last [15] observed sample annotations. Such a strategy to-
wards ground-truth approximation is clearly associated with loss of
activity information and potentially deludes the supervised training
process. This becomes even more problematic since the optimal size
for the sliding window is not known a priori [4] and therefore, no
segment is guaranteed to contain measurements of a single activity
type [23]. Equally important, existing deep HAR systems demand
large amounts of annotated training data for enhanced supervised
performance. However, large-scale annotated HAR datasets are lim-
ited. Further, collection of labeled sensory data is labor intensive,
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time-consuming and expensive [11]. As opposed to other domains
(e.g. image recognition) where human visualization of raw data
alleviates the labeling process, manual annotation of sensor signals
is a tedious task. Unfortunately, activity recognition systems that
leverage the cheaply available unlabeled sensory data are rare in
the field and, therefore, necessitates the exploration of effective
unsupervised alternatives.

In this paper, we overcome the innate limitations of multi-class
formulated HAR by expressing the problem more naturally as a set
prediction problem. As such, the goal is to predict the set of ongo-
ing activity elements (whose cardinality is unknown and unfixed
beforehand) within the duration of a time segment. For instance,
considering a sensory time segment in which the subject of interest
is initially walking but then suddenly stops moving, the system is
expected to output the set {walk,stand} to capture the underlying
activity transition. Similarly, an output empty set {} intuitively
expresses a time segment in which the activities of interest did not
occur. Inspired by the study in [19], for the first time we develop
a HAR system that performs activity set learning and inference
in a systematic fashion using deep paradigms. In contrast to con-
ventional multi-label approaches, our methodology omits heuristic
thresholding methods for selecting activity labels and instead learns
to predict cardinality in addition to the activity labels. Further, mo-
tivated by the scarcity of annotated HAR datasets, we complement
our supervised training scheme with a prior unsupervised feature
learning step that exploits unlabeled time-series data. Through ex-
periments on widely adopted public HAR datasets, we demonstrate
the significant improvement achieved from proposed deep learning
based methodology, the Deep Auto-Set network (depicted in Fig. 1),
over the baseline models. The main contributions of this paper are
summarized as follows:

• For the first time, we investigate a novel formulation of a
human activity recognition problem from body worn sensor
data streams where the predictions for sensory time seg-
ments are expressed as activity sets. Our novel formulation
naturally handles sensory segments with varying number of
activities and thus, avoids the potential loss of information
from conventional ground-truth approximations.

• We present Deep Auto-Set: a unified deep learning paradigm
that (a) seamlessly functions on raw multi-modal sensory
segments, (b) exploits unlabeled data to uncover effective
feature representations, and (c) incorporates set objective to
learn mappings from input sensory data to target activity
sets.

• We demonstrate the effectiveness of our Deep Auto-Set net-
work through empirical experiments on two HAR represen-
tative datasets. We further examine the components of our
proposed methodology in isolation, to present insights on
their contribution to an enhanced recognition performance.

2 RELATEDWORK
The well-established activity recognition pipeline for time-series
sensory data involves sliding window segmentation, feature ex-
traction, and activity classification [4]. In this regard, adopting
hand-crafted features (e.g. statistical features [18], basis transform
features [10], multi-level features [25], bio-mechanical features [21])
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Figure 1: An illustration of our novel Deep Auto-Set net-
work to perform precise activity recognition from time-
series data. Our network consumes windowed raw sensory
excerpts (x), automatically extracts distinctive features and
outputs corresponding sets of activities (Y) with various car-
dinalities.

coupled with employment of shallow classifiers (e.g. support vec-
tor machines [5], decision trees [3], joint boosting [13], graphical
models [20], and multi-layer perceptrons [17]) has been extensively
explored as the traditional approach to HAR. While this manually
tuned procedure has successfully acquired satisfying results for
relatively simple recognition tasks, its generalization performance
is limited by heavy reliance on domain expert knowledge to design
distinctive features.

Recently, the emerging paradigm of deep learning has presented
unparalleled performance in various research areas including com-
puter vision, natural language processing and speech recognition
[14]. When applied to sensor-based HAR, deep learning allows for
automated end-to-end feature extraction and thus, largely alleviates
the need for laborious feature engineering procedures. Motivated
by these, we are seeing an increasing adoption of deep learning
paradigms in HAR [9, 15, 22–24]. In this regard, convolutional neu-
ral networks (CNNs) have appeared as the most popular choice for
automatic extraction of effective high-level features. Research in
this line includes [22, 24] where raw sensory data were processed
by convolutional layers to extract discriminative features. Going be-
yond CNNs, Hammerla et al. [9] conducted extensive experiments
to investigate suitability of various deep architectures for HAR
using wearables and concluded guidelines for hyper-parameter tun-
ing in different application scenarios. Ordóñez and Roggen [15]
developed a recurrent-based neural network (RNN) for wearable
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Figure 2: Unified architecture of our Deep Auto-Set network. The tags above the feature maps refer to the corresponding layer
operations. The numbers before and after "@" respectively correspond to the number of generated feature maps and their
dimensions in each layer. In this architecture, all convolution (and deconvolution) layers apply afilter ofwidth 5 (as in [15]) and
stride 2 (for down-sampling) along the temporal dimension of the feature maps. For the unsupervised step, starting from the
input layer, layer operations on the dashed arrow are consecutively applied on the generated feature maps of previous layers
to output the reconstructed segment; these operations correspond to the convolutional auto-encoder network parameterized
by Θenc and Θdec. Similarly for the supervised step, operations on the solid arrow correspond to the activity set network
parameterized by Θenc and Ω. Once the network parameters are optimized, set inference (as described in Section 3.2) is carried
out to generate activity set predictions.

sensors and reported state-of-the-art performance on a represen-
tative HAR dataset. Except for the dense labelling and prediction
approach in [23], existing supervised solutions are based on the
assumption that all samples within a sliding window segment share
the same activity annotation. We argue that such an assumption
is counter-intuitive to the diverse nature of human activities with
varying durations and hinders accurate analysis of segments with
multiple activities. In this paper, we present a novel network that
naturally allows segmented sensory data to be associated with a
set of activity elements.

Moreover, most existing HAR research solely rely on supervised
training for feature extraction. In the absence of sufficiently large
annotated datasets, this leads to poor generalization performance.
Taking into account the scarcity of annotated HAR datasets and
the difficulty of doing so, we exploit unlabeled time-series data to
learn useful feature representations by adopting convolutional auto-
encoders. In this regard, the most relevant study to ours is [2] where
layer-wise pre-training of fully connected deep belief networks is
adopted and the recognition problem is limited to preprocessed
spectrograms of acceleration measurements. In contrast, our pro-
posed unsupervised methodology substitutes the layer-by-layer
pre-training with an end-to-end optimization of the reconstruction
objective and is also seamlessly applied on raw multi-modal sensor
data.

3 DEEP AUTO-SET FOR HUMAN ACTIVITY
RECOGNITION

Here we elaborate on our novel methodology towards addressing
HAR as a set prediction problem, which we refer to as the Deep
Auto-Set. The working flow of our proposed solution involves an
unsupervised feature learning step (described in Section 3.1) that
exploits cheaply accessible unlabeled sensor measurements fol-
lowed by a supervised fine-tuning step (detailed in Section 3.2) that
leverages valuable label information to extract more discriminative
features while simultaneously training the network to generate
activity sets for the given sensory data. Noting that our method-
ology is not confined to a specific network architecture, we carry
out both supervised and unsupervised tasks by adopting a CNN
architecture employed in [15] as the core of our network and apply
modifications to suit our problem settings; this architecture com-
prises of four convolutional layers followed by two dense layers
that apply rectified linear units (ReLUs) for non-linear transforma-
tion as well as a softmax logistic regression output layer to yield
the classification outcome.

Specifically for the unsupervised feature learning step, we con-
struct a symmetric convolutional auto-encoder by arranging a chain
of deconvolutional operations in the decoder network symmetric
to the convolutional layers in the encoder network. This choice
is grounded over the success of auto-encoders in improving gen-
eralization performance through unsupervised feature learning
[7].
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In addition, for the supervised activity set learning step, the en-
coder network is augmented with a multi-label classification head
and the output layer is adjusted to suit the set formulation. The
overall architecture of our Deep Auto-Set network is illustrated in
Fig. 2. In the proposed architecture, all convolution (and deconvo-
lution) operations are applied along the temporal dimension of the
feature maps, automatically uncovering temporal signal patterns
within the time span of the filters.

In order to provide a clear formulation of the problem, here we
introduce the notations used throughout this paper. In this paper,
we useY for a set with unknown cardinality andYm for a set with
known cardinality m. We define the set of M supported activity
elements by A = {ai }

M
i=1. Consider a collected data stream which

contains raw time-series recordings from d distinct sensor channels.
We assume that for a subset of the recordings, sample annotation is
not provided. Accordingly, adopting time-series segmentation with
a sliding window size ofw on the data stream results in:

• A labeled training dataset S = {(xi ,Y
mi
i )}

N1
i=1 of size N1,

where each training instance is a pair consisting of a sensory
segment xi ∈ Rd×w with a fixed 2D representation and a tar-
get activity set Ymi

i = {a1, . . . ,ami } ⊆ A, |Yi | =mi ,mi ∈

Z+.
• An unlabeled dataset V = {x̄i }

N2
i=1 of size N2, where each

instance is an unlabeled sensory segment x̄i ∈ Rd×w .
In order to leverage a larger number of segments for the unsu-

pervised feature learning task, we define the unlabeled training
dataset U = {x ′

i }
N1+N2
i=1 = V ∪ {xi }

N1
i=1 where each training in-

stance x ′
i ∈ R

d×w is either a segment whose target activity set was
not provided in the first place or a segment whose target set was
intentionally discarded to augment the unlabeled dataset.

3.1 Unsupervised Feature Learning
Through stacked hidden layers of encoding-decoding operations,
auto-encoder learns latent representations of the sensory data in an
unsupervised fashion. The reconstruction of unlabeled segments
captures the process in which the sensor signals are generated
and allows for the correlations between various sensor channels
to be captured. Thus, the latent representations learned by the
auto-encoder serve as efficient features that are highly effective in
discriminating activity patterns. Formally, the input to the convolu-
tional auto-encoder network is an unlabeled sensory time segment
x ′ ∈ U on which the encoder network fenc : Rd×w → Rp (parame-
terized by Θenc) is firstly applied to obtain the latent representation
zx ′,Θenc , i.e.

zx ′,Θenc = fenc(x
′;Θenc). (1)

The resulting latent representation zx ′,Θenc ∈ R
p is then utilized by

the decoder network fdec : Rp → Rd×w (parameterized by Θdec)
to reconstruct the input. Noting that the generated reconstruction
is directly influenced by the values of Θenc and Θdec, we define the
loss incurred by the output of auto-encoder network (illustrated by
the dashed path in Fig. 2) given the unlabeled segment x ′ as

Lauto(x
′;Θenc,Θdec) = ∥x ′ − fdec(zx ′,Θenc ;Θdec)∥

2. (2)

We adopt an end-to-end approach towards training the convolu-
tional auto-encoder parameters by minimizing the reconstruction

objective on the unlabeled datasetU

(Θ∗
enc,Θ

∗
dec) = arg min

Θenc,Θdec

N1+N2∑
i=1

Lauto(x
′
i ;Θenc,Θdec). (3)

In this architecture, the encoder network extracts features from
unlabeled data and the decoder network uses the learned features
to reconstruct the input. As the unsupervised training process
progresses and the corresponding reconstruction loss is reduced,
the network uncovers better feature representations of the sensory
data. As a result, the acquired encoder network weights (Θ∗

enc) can
later be adopted in favor of a better guided supervised training.

3.2 Supervised Activity Set Learning and
Inference

Using the labeled training dataset S = {(xi ,Y
mi
i )}

N1
i=1, the goal

here is to train an activity set network that predicts a set of activity
elements Y+ = {a1, . . . ,am } with unknown and unfixed cardinal-
itym for a given test sensor segment x+. In our architecture, this is
carried out by optimizing a set objective through tuning the activity
set network parameters which include weights corresponding to
the encoder layers (Θenc) as well as the extra dense layers (Ω) in
the classification head. Similar to [19], in this paper we adopt joint
learning and inference to learn and predict activity sets for HAR
which we describe in what follows.

3.2.1 Set Learning. In order to develop an accurate HAR system
that meets the application demands, the network is required to
correctly predict both the set cardinality (number of ongoing ac-
tivities) as well as the set elements (activity types) given a sensory
segment. Formally, given an input segment x , the output of our
activity set network comprises of: i) a set cardinality term fm′(x)
with log softmax activation which produces cardinality scores; as
well as ii) a set element term fa′(x) with sigmoid activation which
produces scores for the set elements (activity types). In order to
compute the loss incurred by the output of the activity set network
(shown by the solid path in Fig. 2) given a labeled segment x with
the target set Ym , we define our set objective as

Lset(x ,Y
m ;Θenc,Ω) =

∑
a∈Y

ℓbce(a, fa′(x ;Θenc,Ω))

+ ℓnll (m, fm′(x ;Θenc,Ω)),
(4)

where ℓnll and ℓbce denote the negative log likelihood loss and the
binary cross entropy loss, respectively. We consider the same i.i.d
assumption adopted in [19] for the set elements and perform MAP
estimate to train the network parameters by minimizing the set
objective on the labeled dataset S, i.e.

(Θ∗
enc,Ω

∗) = arg min
Θenc,Ω

N1∑
i=1

Lset(xi ,Y
mi
i ;Θenc,Ω). (5)

As such,Θ∗
enc and Ω∗ are estimated by computing the partial deriva-

tives of the objective function in Eq. (4) and employing standard
backpropagation in order to learn the network parameters.

3.2.2 Set Inference. During the prediction phase for a given
time segment x+, the goal is to predict the most likely set of ac-
tivity elements Y∗ = {a1, . . . ,am }. Using the optimal parameters
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(Θ∗
enc,Ω

∗) learned from the training dataset S, a MAP inference is
adopted to output the most likely activity set as

Y∗ = arg max
m′,Ym′

fm′

(
x+;Θ∗

enc,Ω
∗
)
+m′ logU

+
∑

a′∈Ym′

log fa′(x+;Θ∗
enc,Ω

∗),
(6)

whereU , estimated from the validation set of the data, is a normal-
ization constant that allows comparison between sets with different
cardinalities. We derive the optimal solution for the above problem
by solving a simple linear program as suggested in [19].

4 EXPERIMENTS
4.1 Datasets
For the evaluation of our approach, we adopt two widely used
public HAR datasets that present both periodic and static activities.
These benchmarks are elaborated as follows:

• WISDM Actitracker dataset [12]: This dataset contains
1,098,207 triaxial accelerometer readings gathered from 36
users which reflect activity patterns of walking, jogging, sit-
ting, standing, and climbing stairs. The acceleration mea-
surements are collected with Android mobile phones at a
constant sampling rate of 20 Hz. We randomly select record-
ings from 8 users as the testing set and use the remaining
data as our training and validation sets.

• Opportunity dataset [6]: This dataset comprises annotated
recordings from a wide variety of on-body sensors config-
ured on four subjects while carrying out morning activities.
The annotations include several modes of locomotion along
with a Null activity (referring to non-relevant activities)
which makes the recognition problem much more challeng-
ing. For data collection, subjects were instructed to perform
five Activities of Daily Living (ADL) runs as well as a drill
session with 20 repetitions of a predefined sequence of activ-
ities. Each sample in the resulting dataset corresponds to 113
real valued signal measurements recorded with a sampling
rate of 30 Hz. We employ the same subset of data as in the
Opportunity challenge [6] for training and testing purposes:
ADL runs 4 and 5 collected from subjects 2 and 3 compose
our testing set, and the remainder of the recordings from
subjects 1,2 and 3 form our training and validation sets.

4.2 Data Preparation
The preparation process involves performing per channel normal-
ization to scale real valued attributes to [0,1] interval as well as
segmentation and ground-truth generation, as described below.
Time-series Segmentation: Following the experiments in [2, 12],
we fix the sliding window size w to incorporate 200 samples for
both datasets (i.e, segments of 10 and 6.67 seconds duration for
Actitracker and Opportunity dataset, respectively). However, since
using non-overlapping sliding windows hinders real-time recog-
nition of human activities, we set the sliding window stride to 20
samples. Such a deployment setting leads to generating predictions
every second for the Actitracker dataset and every 0.67 seconds for
the Opportunity dataset.

Set Ground-Truth Preparation: Considering the sample anno-
tations of a windowed sensory excerpt, the goal is to prepare the
corresponding target set of activity elements as the training data.
To this end, we consider a minimum expected recognition length
denoted by r , based on which we include activities in the target
set. As such, if a minimum of r sample annotations from a specific
activity are observed in a time segment, the activity label appears
in the target set. If no activity persists for the duration of r , the
target activity set is considered as an empty set {}, representing the
Null activity segment. In our experiments, we set r to half the sen-
sor sampling rates; i.e., 10 and 15 for Actitracker and Opportunity
datasets, respectively.

4.3 Evaluation Metrics
We employ the widely used HAR evaluation measures to report
the performance of the baselines and our Deep Auto-Set network.
We select per-label precision (P ), recall (R) and F1-score (F1) instead
of accuracy since accuracy is a bias estimator in the presence of
class imbalance. For a specific activity label, label-based precision is
defined as the ratio of the correctly predicted label occurrences over
the total number of label occurrences in the predictions. Similarly,
per-label recall is defined as the ratio of the correctly predicted
label occurrences over the total number of label occurrences in
the ground-truth. In this regard, per-label F1-score corresponds
to the harmonic mean of precision and recall. Accordingly, Pmean,
Rmean and Fmean are calculated by averaging across the per-label
measures.

We also use the overall exact match ratio (MR), as adopted in
[1, 8], to report a harsh evaluation of performance. This metric re-
quires the predicted activity set to exactly match the corresponding
target set (both in terms of the set cardinality and the set elements)
and therefore, does not tolerate partially correct predictions. For
instance, no credit is considered for a predicted set of {walk} when
the target set is {walk,stand}. We further decompose this measure
over different activity set cardinalities c and additionally report
MRc ; i.e, for instance MR2 corresponds to the number of correctly
predicted activity sets with cardinality of 2 over the total number
of target sets with this cardinality.

4.4 Implementation Details
In this paper, the experiments are implemented using Pytorch [16]
as the deep learning framework and are run on a machine with a
single GPU (NVIDIA GeForce GTX 1060). The network parameters
are learned using ADAM optimizer with weight decay and initial
learning rate respectively set to 5 · 10−5 and 10−4, on mini-batches
of size 64 by backpropagating the gradients of corresponding loss
functions. For the supervised training step, the optimizer learning
rate is scheduled to gradually decrease after each epoch. Moreover,
training is stopped if validation objective does not decrease for 5
subsequent epochs. Accordingly, the corresponding weights for the
epoch with the best validation performance are applied to report
performance on the testing sets. The hyper-parameter U is set
to be 2.5 and 3.4, respectively adjusted on the validation sets of
Actitracker and Opportunity datasets. We refer interested readers
to [9] for excellent guidelines on setting architecture and optimizer
hyper-parameters.
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Table 1: Performance evaluation of the baseline CNN architecture [15] trained with multi-class formulated objective against
both the approximated ground truth (equivalent to the last observed sample annotation) as well as the actual ground-truth
for Opportunity dataset.

Model Network Prediction Evaluation Ground Truth Fmean MR

CNN [15] Single activity label Last sample’s label 0.890 87.4%
Actual labels 0.793 54.7%

Table 2: Comparison of our proposed Deep Auto-Set network against the baselines according to the obtained exact match ratio
for each dataset. The best results are highlighted with boldface. Note that for the Actitracker dataset, sensor segments with
cardinality of 0 (corresponding to Null segments) and 3 do not exist.

Dataset Model MR MR0 MR1 MR2 MR3

Actitracker

(Baseline) Deep-BCE 90.1% - 91.1% 60.2% -
(Ours) Auto-BCE 92.9% - 93.9% 62.7% -
(Ours) Deep-Set 93.2% - 93.9% 71.5% -
(Ours) Auto-Set 94.9% - 95.5% 75.1% -

Opportunity
(locomotions)

(Baseline) Deep-BCE 82.0% 70.7% 85.0% 84.9% 68.3%
(Ours) Auto-BCE 83.1% 73.7% 85.1% 85.3% 69.9%
(Ours) Deep-Set 83.9% 78.2% 86.8% 84.9% 68.7%
(Ours) Auto-Set 84.9% 80.2% 87.1% 85.6% 75.6%

Table 3: Comparison of our proposedDeep Auto-Set network
against the baselines according to the obtained mean F1-
score (Fmean), precision (Pmean) and recall (Rmean) for each
dataset. The best results are highlighted with boldface.

Dataset Model Fmean Pmean Rmean

Actitracker

(Baseline) Deep-BCE 0.943 0.908 0.980
(Ours) Auto-BCE 0.966 0.949 0.983
(Ours) Deep-Set 0.961 0.943 0.980
(Ours) Auto-Set 0.973 0.957 0.989

Opportunity
(locomotions)

(Baseline) Deep-BCE 0.927 0.901 0.954
(Ours) Auto-BCE 0.936 0.918 0.955
(Ours) Deep-Set 0.934 0.915 0.955
(Ours) Auto-Set 0.943 0.927 0.960

4.5 Results
A key motivation for our work is the activity information loss that
is incurred by conventional ground truth approximations in multi-
class problem formulations. In order to verify this, we conform
to the conventional multi-class formulation of HAR and train the
CNN in [15] by minimizing the multi-class classification objective.
In Table 1, we report performance of the resulting HAR system by
comparing the generated predictions against both the approximate
ground truth (obtained from the last observed sample annotation) as
well as the actual multi-label ground truth for Opportunity dataset.
To clarify, consider the scenario where a sensory segment of interest
initiates with measurements of walking and terminates with stand-
ing. Thus, the approximate ground truth would be standing but the
actual ground truth labels are the set {walking,standing}. Assum-
ing that the network solving the multi-class formulated problem
predicts the underlying activity to be standing, in our evaluation
against the actual ground truth represented by the set of labels
{walking,standing}, the predicted class standing is treated as a true

positive whereas the missing class walking is considered as a false
negative.

In Table 1, the lower performance measures obtained from the
evaluation against the actual ground truth labels as compared with
the approximated ground truth suggest that there are sensory seg-
ments in the HAR dataset that convey measurements of multiple
activities in the time span of the sliding window—see the result for
MR in Table 1. For these segments, approximating the ground-truth
can lead to missed activity information for a multi-class formula-
tion of HAR, especially in the presence of short duration activities
such as activity transitions [23]. In contrast, a set-based formula-
tion allows capturing the presence of multiple activity labels in
the ground truth. Although we have shown a comparison for a
multi-class problem formulation commonly employed for HAR,
we can see that it is not possible to make a fair comparison with
our set-based formulation beyond what we have observed here.
Therefore, we omit empirical comparisons with existing multi-class
based solutions and instead present evaluation against multi-label
based activity recognition systems that can handle segments with
multiple activities.

Activity Recognition Models: Fig. 3 illustrates the schematic
architectures for:

• Deep-BCE: A conventional multi-label model that follows
a purely supervised minimization of binary cross entropy
loss (ℓbce) for training and heuristic thresholding of activity
scores for inference.

• Auto-BCE: A conventional multi-label model that leverages
a prior unsupervised feature learning step via minimization
of reconstruction objective (Lauto) as well as a supervised
optimization of binary cross entropy loss.

• Deep-Set: A set-based model that follows a purely supervised
optimization of the set objective (Lset) proposed in Eq. (4)
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Figure 3: An overview of different activity recognition models explored in this paper. Note that all models adopt the same
network architecture to generate classification outputs and thus, share the same number of parameters. Therefore, the en-
hanced recognition performance is a product of effective unsupervised feature learning as well as incorporating novel set loss
function for the underlying problem.

for training and the MAP inference introduced in Eq. (6) for
set inference.

• Auto-Set: The proposed Deep Auto-Set model elaborated in
Section 3.

Notably, as opposed to existing multi-class based HAR systems
which are restricted to predict a single activity class even when
an activity transition takes place within a segment, all recognition
models adopted in this paper are capable of predicting multiple
activities for a given sensory segment. We adopt the same layer
operations presented in Fig. 2 for supervised and unsupervised
training steps of the baseline models.

The performance results of our Deep Auto-Set network and the
baseline models on the two HAR representative datasets are shown
in Table 2 and Table 3 for different evaluation metrics. From the
reported results, we can see that our novel Deep Auto-Set network
consistently outperforms the baselines on Actitracker and Oppor-
tunity datasets in terms of both F1-score and exact match ratio
performance metrics. Moreover, the match ratios in Table 2 suggest
that Deep Auto-Set is a robust activity recognition system capable
of: i) distinguishing different activity classes accurately (implied
from MR0 and MR1 values); ii) identifying activity transition seg-
ments (implied from MR2 values); as well as iii) recognizing short
duration human activities (implied from MR3 values).

We summarize the experimental results on both datasets by
concluding that:

• Activity recognition systems that leverage unlabeled data
present better performance over their solely supervised vari-
ants; e.g., note the improved performance of Auto-BCE over
Deep-BCE.

• Compared with a conventional multi-label formulation: i)
incorporating set loss into the training process can allow
the network to learn mulitple activities represented in the
ground truth data of a given segment more accurately; and
ii) the set inference procedure can jointly exploit cardinality
and set element scores to generate predictions instead of em-
pirically determined thresholds; e.g., note the performance
improvement of Deep-Set over Deep-BCE.

• While each component of our proposed methodology (un-
supervised feature learning and supervised set learning) in-
dividually introduces performance boost in recognition of
human activities, when coupled together in a unified frame-
work, the resulting HAR system proves to be the most effec-
tive.

5 CONCLUSIONS
In this paper, we defined human activity recognition as a set predic-
tion problem. In contrast to the conventional multi-class treatment
of HAR problems, our intuitive formulation allows sensory seg-
ments to be associated with a set of activities and thus, naturally
handles segments with multiple activities. In a unified architecture,
we addressed the HAR problem by developing a deep HAR system
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that: i) exploits unlabeled data to uncover effective feature repre-
sentations; and ii) incorporates a set objective to learn mappings
from input sensory segments to target activity sets. To provide
insights on how each component of our proposed methodology
contributes to enhance recognition performance in isolation, we
explored three different multi-label activity recognition models
as our baselines. Finally, through empirical experiments on HAR
representative datasets, we demonstrated the effectiveness of our
proposed Deep Auto-Set network for human activity recognition.

While not explored in this paper, our proposed set-based method-
ology potentially offers an elegant solution for the challenging prob-
lem of concurrent human activity recognition. In this problem, the
goal is to recognize not only the sequential but also the co-occurring
activities from raw sensory time-series data. As a future direction
to our current study, we intend to further investigate recognition
of concurrent human activities.
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